These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

294 related articles for article (PubMed ID: 38363106)

  • 1. Automation and Computerization of (Bio)sensing Systems.
    Raju CM; Elpa DP; Urban PL
    ACS Sens; 2024 Mar; 9(3):1033-1048. PubMed ID: 38363106
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rethinking Autonomous Surgery: Focusing on Enhancement over Autonomy.
    Battaglia E; Boehm J; Zheng Y; Jamieson AR; Gahan J; Majewicz Fey A
    Eur Urol Focus; 2021 Jul; 7(4):696-705. PubMed ID: 34246619
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sensing and Automation Technologies for Ornamental Nursery Crop Production: Current Status and Future Prospects.
    Mahmud MS; Zahid A; Das AK
    Sensors (Basel); 2023 Feb; 23(4):. PubMed ID: 36850415
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of artificial intelligence in active assisted living for aging population in real-world setting with commercial devices - A scoping review.
    Wang K; Ghafurian M; Chumachenko D; Cao S; Butt ZA; Salim S; Abhari S; Morita PP
    Comput Biol Med; 2024 May; 173():108340. PubMed ID: 38555702
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microfluidic cap-to-dispense (μCD): a universal microfluidic-robotic interface for automated pipette-free high-precision liquid handling.
    Wang J; Deng K; Zhou C; Fang Z; Meyer C; Deshpande KU; Li Z; Mi X; Luo Q; Hammock BD; Tan C; Chen Y; Pan T
    Lab Chip; 2019 Oct; 19(20):3405-3415. PubMed ID: 31501848
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application of Intelligent Medical Sensing Technology.
    Fu J; Gao Q; Li S
    Biosensors (Basel); 2023 Aug; 13(8):. PubMed ID: 37622898
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recent developments and potential of robotics in plant eco-phenotyping.
    Yao L; van de Zedde R; Kowalchuk G
    Emerg Top Life Sci; 2021 May; 5(2):289-300. PubMed ID: 34013965
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Laboratory systems integration: robotics and automation.
    Felder RA
    Ann Biol Clin (Paris); 1991; 49(5):298-300. PubMed ID: 1928847
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dentronics: Towards robotics and artificial intelligence in dentistry.
    Grischke J; Johannsmeier L; Eich L; Griga L; Haddadin S
    Dent Mater; 2020 Jun; 36(6):765-778. PubMed ID: 32349877
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Automation of mass spectrometric detection of analytes and related workflows: A review.
    Elpa DP; Prabhu GRD; Wu SP; Tay KS; Urban PL
    Talanta; 2020 Feb; 208():120304. PubMed ID: 31816721
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automation and artificial intelligence in filamentous fungi-based bioprocesses: A review.
    Wainaina S; Taherzadeh MJ
    Bioresour Technol; 2023 Feb; 369():128421. PubMed ID: 36462761
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automation With Intelligence in Drug Research.
    Tu H; Lin Z; Lee K
    Clin Ther; 2019 Nov; 41(11):2436-2444. PubMed ID: 31582192
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Robotics, microfluidics, nanotechnology and AI in the synthesis and evaluation of liposomes and polymeric drug delivery systems.
    Egorov E; Pieters C; Korach-Rechtman H; Shklover J; Schroeder A
    Drug Deliv Transl Res; 2021 Apr; 11(2):345-352. PubMed ID: 33585972
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microfluidics for personalized drug delivery.
    Alavi SE; Alharthi S; Alavi SF; Alavi SZ; Zahra GE; Raza A; Ebrahimi Shahmabadi H
    Drug Discov Today; 2024 Apr; 29(4):103936. PubMed ID: 38428803
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A robot-assisted acoustofluidic end effector.
    Durrer J; Agrawal P; Ozgul A; Neuhauss SCF; Nama N; Ahmed D
    Nat Commun; 2022 Oct; 13(1):6370. PubMed ID: 36289227
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automation to Enable High-Throughput Chemical Proteomics.
    Lin Z; Gongora J; Liu X; Xie Y; Zhao C; Lv D; Garcia BA
    J Proteome Res; 2023 Dec; 22(12):3676-3682. PubMed ID: 37917986
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of Digital Microfluidics in Enabling Access to Laboratory Automation and Making Biology Programmable.
    Kothamachu VB; Zaini S; Muffatto F
    SLAS Technol; 2020 Oct; 25(5):411-426. PubMed ID: 32584152
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Machine Learning Techniques for Increasing Efficiency of the Robot's Sensor and Control Information Processing.
    Kondratenko Y; Atamanyuk I; Sidenko I; Kondratenko G; Sichevskyi S
    Sensors (Basel); 2022 Jan; 22(3):. PubMed ID: 35161819
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-throughput microfluidic systems accelerated by artificial intelligence for biomedical applications.
    Zhou J; Dong J; Hou H; Huang L; Li J
    Lab Chip; 2024 Feb; 24(5):1307-1326. PubMed ID: 38247405
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An Update on Current Trend in Sample Preparation Automation in Bioanalysis: strategies, Challenges and Future Direction.
    More D; Khan N; Tekade RK; Sengupta P
    Crit Rev Anal Chem; 2024 Jul; ():1-25. PubMed ID: 38949910
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.