BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 38363169)

  • 1. Ag supraparticles with 3D hot spots to actively capture molecules for sensitive detection by surface enhanced Raman spectroscopy.
    Zhu M; Zhou G; Dong R; Li P; Yang L
    Analyst; 2024 Mar; 149(6):1759-1765. PubMed ID: 38363169
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Self-Concentrated Surface-Enhanced Raman Scattering-Active Droplet Sensor with Three-Dimensional Hot Spots for Highly Sensitive Molecular Detection in Complex Liquid Environments.
    Li R; Gui B; Mao H; Yang Y; Chen D; Xiong J
    ACS Sens; 2020 Nov; 5(11):3420-3431. PubMed ID: 32929960
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Highly porous gold supraparticles as surface-enhanced Raman spectroscopy (SERS) substrates for sensitive detection of environmental contaminants.
    Kang S; Wang W; Rahman A; Nam W; Zhou W; Vikesland PJ
    RSC Adv; 2022 Nov; 12(51):32803-32812. PubMed ID: 36425178
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Construction of Ag nanowire@Au nanoparticle nano nests with densely stacked small gaps for actively trapping molecules to realize diversity SERS detection.
    Xie T; Li P; Ge M; Chen S; Huang G; Li J; Gong M; Weng S; Yang L
    Analyst; 2022 May; 147(11):2541-2548. PubMed ID: 35548871
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Layer-by-layer assembly of Ag nanowires into 3D woodpile-like structures to achieve high density "hot spots" for surface-enhanced Raman scattering.
    Chen M; Phang IY; Lee MR; Yang JK; Ling XY
    Langmuir; 2013 Jun; 29(23):7061-9. PubMed ID: 23706081
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ag-Nanoparticles@Bacterial Nanocellulose as a 3D Flexible and Robust Surface-Enhanced Raman Scattering Substrate.
    Huo D; Chen B; Meng G; Huang Z; Li M; Lei Y
    ACS Appl Mater Interfaces; 2020 Nov; 12(45):50713-50720. PubMed ID: 33112614
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanoarchitecture Based SERS for Biomolecular Fingerprinting and Label-Free Disease Markers Diagnosis.
    Sinha SS; Jones S; Pramanik A; Ray PC
    Acc Chem Res; 2016 Dec; 49(12):2725-2735. PubMed ID: 27993003
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3D aluminum/silver hierarchical nanostructure with large areas of dense hot spots for surface-enhanced raman scattering.
    Zhao N; Li H; Xie Y; Feng Z; Wang Z; Yang Z; Yan X; Wang W; Tian C; Yu H
    Electrophoresis; 2019 Dec; 40(23-24):3123-3131. PubMed ID: 31576580
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Large-Scale Hot Spot Engineering for Quantitative SERS at the Single-Molecule Scale.
    Chen HY; Lin MH; Wang CY; Chang YM; Gwo S
    J Am Chem Soc; 2015 Oct; 137(42):13698-705. PubMed ID: 26469218
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3D silver nanoparticles with multilayer graphene oxide as a spacer for surface enhanced Raman spectroscopy analysis.
    Li Z; Jiang S; Huo Y; Ning T; Liu A; Zhang C; He Y; Wang M; Li C; Man B
    Nanoscale; 2018 Mar; 10(13):5897-5905. PubMed ID: 29546897
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Controlling the Shrinkage of 3D Hot Spot Droplets as a Microreactor for Quantitative SERS Detection of Anticancer Drugs in Serum Using a Handheld Raman Spectrometer.
    Zhou G; Li P; Ge M; Wang J; Chen S; Nie Y; Wang Y; Qin M; Huang G; Lin D; Wang H; Yang L
    Anal Chem; 2022 Mar; 94(11):4831-4840. PubMed ID: 35254058
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Self-Organized SERS Substrates with Efficient Analyte Enrichment in the Hot Spots.
    Dzhagan V; Mazur N; Kapush O; Skoryk M; Pirko Y; Yemets A; Dzhahan V; Shepeliavyi P; Valakh M; Yukhymchuk V
    ACS Omega; 2024 Jan; 9(4):4819-4830. PubMed ID: 38313516
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three-Dimensional SERS Substrates Formed with Plasmonic Core-Satellite Nanostructures.
    Wu LA; Li WE; Lin DZ; Chen YF
    Sci Rep; 2017 Oct; 7(1):13066. PubMed ID: 29026173
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimization of electromagnetic hot spots in surface-enhanced Raman scattering substrates for an ultrasensitive drug assay of emergency department patients' plasma.
    Liyanage T; Masterson AN; Hati S; Ren G; Manicke NE; Rusyniak DE; Sardar R
    Analyst; 2020 Nov; 145(23):7662-7672. PubMed ID: 32969415
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three-dimensional (3D) plasmonic hot spots for label-free sensing and effective photothermal killing of multiple drug resistant superbugs.
    Jones S; Sinha SS; Pramanik A; Ray PC
    Nanoscale; 2016 Nov; 8(43):18301-18308. PubMed ID: 27714099
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three-Dimensional Hierarchical Reticular Nanostructure of
    Wang M; Wang Y; Yan X; Sun X; Shi G; Zhang K; Ren L; Ma W
    Nanomaterials (Basel); 2018 Nov; 8(11):. PubMed ID: 30400593
    [TBL] [Abstract][Full Text] [Related]  

  • 17. General Surface-Enhanced Raman Spectroscopy Method for Actively Capturing Target Molecules in Small Gaps.
    Ge M; Li P; Zhou G; Chen S; Han W; Qin F; Nie Y; Wang Y; Qin M; Huang G; Li S; Wang Y; Yang L; Tian Z
    J Am Chem Soc; 2021 May; 143(20):7769-7776. PubMed ID: 33988987
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optofluidic Accumulation of Silica Beads on Gel-Based Three-Dimensional SERS Substrate To Enhance Sensitivity Using Multiple Photonic Nanojets.
    Xie CZ; Li CH; Chang YC; Chen YF
    ACS Appl Mater Interfaces; 2023 Jul; 15(26):31703-31710. PubMed ID: 37343114
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-assembly of gold supraparticles with crystallographically aligned and strongly coupled nanoparticle building blocks for SERS and photothermal therapy.
    Paterson S; Thompson SA; Gracie J; Wark AW; de la Rica R
    Chem Sci; 2016 Sep; 7(9):6232-6237. PubMed ID: 30034763
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Flexible 3D Substrate of Ag Nanoparticle-Loaded Carbon Aerogels with Outstanding Surface-Enhanced Raman Scattering Performance.
    Zheng C; Yu J; Dou L; Wang Z; Huang Z; Li X; Hu X; Li Y
    ACS Appl Mater Interfaces; 2023 Jun; 15(24):29609-29617. PubMed ID: 37285222
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.