These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 38363169)

  • 21. Manipulating "Hot Spots" from Nanometer to Angstrom: Toward Understanding Integrated Contributions of Molecule Number and Gap Size for Ultrasensitive Surface-Enhanced Raman Scattering Detection.
    Lu H; Zhu L; Lu Y; Su J; Zhang R; Cui Y
    ACS Appl Mater Interfaces; 2019 Oct; 11(42):39359-39368. PubMed ID: 31565918
    [TBL] [Abstract][Full Text] [Related]  

  • 22. 3D Plasmon Coupling Assisted Sers on Nanoparticle-Nanocup Array Hybrids.
    Seo S; Chang TW; Liu GL
    Sci Rep; 2018 Feb; 8(1):3002. PubMed ID: 29445092
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ultrasensitive SERS detection of trinitrotoluene through capillarity-constructed reversible hot spots based on ZnO-Ag nanorod hybrids.
    He X; Wang H; Li Z; Chen D; Liu J; Zhang Q
    Nanoscale; 2015 May; 7(18):8619-26. PubMed ID: 25899553
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Glycerol-Assisted Construction of Long-Life Three-Dimensional Surface-Enhanced Raman Scattering Hot Spot Matrix.
    Wang Y; Wei Z; Zhang Y; Chen Y
    Langmuir; 2019 Dec; 35(48):15795-15804. PubMed ID: 31246031
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Highly sensitive SERS substrates with multi-hot spots for on-site detection of pesticide residues.
    Xie T; Cao Z; Li Y; Li Z; Zhang FL; Gu Y; Han C; Yang G; Qu L
    Food Chem; 2022 Jul; 381():132208. PubMed ID: 35123223
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The Effect of Nanoparticle Composition on the Surface-Enhanced Raman Scattering Performance of Plasmonic DNA Origami Nanoantennas.
    Kanehira Y; Tapio K; Wegner G; Kogikoski S; RĂ¼stig S; Prietzel C; Busch K; Bald I
    ACS Nano; 2023 Nov; 17(21):21227-21239. PubMed ID: 37847540
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Silver nanoflowers for single-particle SERS with 10 pM sensitivity.
    Roy S; Muhammed Ajmal C; Baik S; Kim J
    Nanotechnology; 2017 Nov; 28(46):465705. PubMed ID: 28901949
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Au Nanoparticles Immobilized on Honeycomb-Like Polymeric Films for Surface-Enhanced Raman Scattering (SERS) Detection.
    Chiang CY; Liu TY; Su YA; Wu CH; Cheng YW; Cheng HW; Jeng RJ
    Polymers (Basel); 2017 Mar; 9(3):. PubMed ID: 30970772
    [TBL] [Abstract][Full Text] [Related]  

  • 29. MOF-Derived hierarchical porous 3D ZnO/Ag nanostructure as a reproducible SERS substrate for ultrasensitive detection of multiple environmental pollutants.
    Su G; Dang L; Liu G; Feng T; Wang W; Wang C; Wei H
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 Apr; 270():120818. PubMed ID: 34999358
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Three-Dimensional Dendritic Au-Ag Substrate for On-Site SERS Detection of Trace Molecules in Liquid Phase.
    Shao Y; Li S; Niu Y; Wang Z; Zhang K; Mei L; Hao Y
    Nanomaterials (Basel); 2022 Jun; 12(12):. PubMed ID: 35745341
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Superhydrophobic Surface Modification of Polymer Microneedles Enables Fabrication of Multimodal Surface-Enhanced Raman Spectroscopy and Mass Spectrometry Substrates for Synthetic Drug Detection in Blood Plasma.
    Simas MV; Olaniyan PO; Hati S; Davis GA; Anspach G; Goodpaster JV; Manicke NE; Sardar R
    ACS Appl Mater Interfaces; 2023 Oct; 15(40):46681-46696. PubMed ID: 37769194
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Probing the Location of 3D Hot Spots in Gold Nanoparticle Films Using Surface-Enhanced Raman Spectroscopy.
    Zhang YJ; Chen S; Radjenovic P; Bodappa N; Zhang H; Yang ZL; Tian ZQ; Li JF
    Anal Chem; 2019 Apr; 91(8):5316-5322. PubMed ID: 30912431
    [TBL] [Abstract][Full Text] [Related]  

  • 33. High-density metallic nanogaps fabricated on solid substrates used for surface enhanced Raman scattering.
    Lu G; Li H; Wu S; Chen P; Zhang H
    Nanoscale; 2012 Feb; 4(3):860-3. PubMed ID: 22159183
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Smart SERS Hot Spots: Single Molecules Can Be Positioned in a Plasmonic Nanojunction Using Host-Guest Chemistry.
    Kim NH; Hwang W; Baek K; Rohman MR; Kim J; Kim HW; Mun J; Lee SY; Yun G; Murray J; Ha JW; Rho J; Moskovits M; Kim K
    J Am Chem Soc; 2018 Apr; 140(13):4705-4711. PubMed ID: 29485275
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Elevating the density and intensity of hot spots by repeated annealing for high-efficiency SERS.
    Hou L; Shao M; Li Z; Zhao X; Liu A; Zhang C; Xiu X; Yu J; Li Z
    Opt Express; 2020 Sep; 28(20):29357-29367. PubMed ID: 33114837
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Spatially Controlled Fabrication of Surface-Enhanced Raman Scattering Hot Spots through Photoinduced Dewetting of Silver Thin Films.
    Choi HK; Park SM; Jeong J; Lee H; Yeon GJ; Kim DS; Kim ZH
    J Phys Chem Lett; 2022 Apr; 13(13):2969-2975. PubMed ID: 35343701
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Preparation of Hydrophobic Film by Electrospinning for Rapid SERS Detection of Trace Triazophos.
    Shao F; Cao J; Ying Y; Liu Y; Wang D; Guo X; Wu Y; Wen Y; Yang H
    Sensors (Basel); 2020 Jul; 20(15):. PubMed ID: 32722113
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Highly effective and uniform SERS substrates fabricated by etching multi-layered gold nanoparticle arrays.
    Zhang L; Guan C; Wang Y; Liao J
    Nanoscale; 2016 Mar; 8(11):5928-37. PubMed ID: 26911794
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Rapid Formation of Nanoclusters for Detection of Drugs in Urine Using Surface-Enhanced Raman Spectroscopy.
    Chen YC; Hong SW; Wu HH; Wang YL; Chen YF
    Nanomaterials (Basel); 2021 Jul; 11(7):. PubMed ID: 34361175
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fabrication of highly sensitive and reproducible 3D surface-enhanced Raman spectroscopy substrates through in situ cleaning and layer-by-layer assembly of Au@Ag nanocube monolayer film.
    Gao M; Lin X; Li Z; Wang X; Qiao Y; Zhao H; Zhang J; Wang L
    Nanotechnology; 2019 Aug; 30(34):345604. PubMed ID: 31067524
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.