These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
288 related articles for article (PubMed ID: 38363436)
1. Synergistic interactions of assorted ameliorating agents to enhance the potential of heavy metal phytoremediation. Sanjana S; Jazeel K; Janeeshma E; Nair SG; Shackira AM Stress Biol; 2024 Feb; 4(1):13. PubMed ID: 38363436 [TBL] [Abstract][Full Text] [Related]
2. Assisting Phytoremediation of Heavy Metals Using Chemical Amendments. Hasan MM; Uddin MN; Ara-Sharmeen I; F Alharby H; Alzahrani Y; Hakeem KR; Zhang L Plants (Basel); 2019 Aug; 8(9):. PubMed ID: 31438507 [TBL] [Abstract][Full Text] [Related]
3. Advances in the application of plant growth-promoting rhizobacteria in phytoremediation of heavy metals. Tak HI; Ahmad F; Babalola OO Rev Environ Contam Toxicol; 2013; 223():33-52. PubMed ID: 23149811 [TBL] [Abstract][Full Text] [Related]
4. Understanding the molecular mechanisms for the enhanced phytoremediation of heavy metals through plant growth promoting rhizobacteria: A review. Manoj SR; Karthik C; Kadirvelu K; Arulselvi PI; Shanmugasundaram T; Bruno B; Rajkumar M J Environ Manage; 2020 Jan; 254():109779. PubMed ID: 31726280 [TBL] [Abstract][Full Text] [Related]
5. Helping plants to deal with heavy metal stress: the role of nanotechnology and plant growth promoting rhizobacteria in the process of phytoremediation. Gulzar ABM; Mazumder PB Environ Sci Pollut Res Int; 2022 Jun; 29(27):40319-40341. PubMed ID: 35316490 [TBL] [Abstract][Full Text] [Related]
6. Plant growth-promoting rhizobacteria: A good companion for heavy metal phytoremediation. Zhu Y; Wang Y; He X; Li B; Du S Chemosphere; 2023 Oct; 338():139475. PubMed ID: 37442391 [TBL] [Abstract][Full Text] [Related]
7. Role of Plant-Growth-Promoting Rhizobacteria in Plant Machinery for Soil Heavy Metal Detoxification. Qin H; Wang Z; Sha W; Song S; Qin F; Zhang W Microorganisms; 2024 Mar; 12(4):. PubMed ID: 38674644 [TBL] [Abstract][Full Text] [Related]
8. Phosphate-solubilizing bacteria-assisted phytoremediation of metalliferous soils: a review. Ahemad M 3 Biotech; 2015 Apr; 5(2):111-121. PubMed ID: 28324572 [TBL] [Abstract][Full Text] [Related]
9. Phytoremediation technology and food security impacts of heavy metal contaminated soils: A review of literature. Oladoye PO; Olowe OM; Asemoloye MD Chemosphere; 2022 Feb; 288(Pt 2):132555. PubMed ID: 34653492 [TBL] [Abstract][Full Text] [Related]
10. Plant growth-promoting bacteria in phytoremediation of metal-polluted soils: Current knowledge and future directions. Alves ARA; Yin Q; Oliveira RS; Silva EF; Novo LAB Sci Total Environ; 2022 Sep; 838(Pt 4):156435. PubMed ID: 35660615 [TBL] [Abstract][Full Text] [Related]
11. Value added phytoremediation of metal stressed soils using phosphate solubilizing microbial consortium. Gupta P; Kumar V World J Microbiol Biotechnol; 2017 Jan; 33(1):9. PubMed ID: 27858338 [TBL] [Abstract][Full Text] [Related]
12. Understanding molecular mechanisms for improving phytoremediation of heavy metal-contaminated soils. Hong-Bo S; Li-Ye C; Cheng-Jiang R; Hua L; Dong-Gang G; Wei-Xiang L Crit Rev Biotechnol; 2010 Mar; 30(1):23-30. PubMed ID: 19821782 [TBL] [Abstract][Full Text] [Related]
13. Phytoremediation of DEHP and heavy metals co-contaminated soil by rice assisted with a PGPR consortium: Insights into the regulation of ion homeostasis, improvement of photosynthesis and enrichment of beneficial bacteria in rhizosphere soil. Liu A; Wang W; Chen X; Zheng X; Fu W; Wang G; Ji J; Guan C Environ Pollut; 2022 Dec; 314():120303. PubMed ID: 36181940 [TBL] [Abstract][Full Text] [Related]
14. Integrated phytobial heavy metal remediation strategies for a sustainable clean environment - A review. Asad SA; Farooq M; Afzal A; West H Chemosphere; 2019 Feb; 217():925-941. PubMed ID: 30586789 [TBL] [Abstract][Full Text] [Related]
15. Diazotrophs-assisted phytoremediation of heavy metals: a novel approach. Ullah A; Mushtaq H; Ali H; Munis MF; Javed MT; Chaudhary HJ Environ Sci Pollut Res Int; 2015 Feb; 22(4):2505-14. PubMed ID: 25339525 [TBL] [Abstract][Full Text] [Related]
16. Bacterial Communities Associated with the Roots of Martínez-Martínez JG; Rosales-Loredo S; Hernández-Morales A; Arvizu-Gómez JL; Carranza-Álvarez C; Macías-Pérez JR; Rolón-Cárdenas GA; Pacheco-Aguilar JR Microorganisms; 2023 Jun; 11(6):. PubMed ID: 37375088 [TBL] [Abstract][Full Text] [Related]
17. Phytoremediation: A Novel Approach of Bast Fiber Plants (Hemp, Kenaf, Jute and Flax) for Heavy Metals Decontamination in Soil-Review. Cleophas FN; Zahari NZ; Murugayah P; Rahim SA; Mohd Yatim AN Toxics; 2022 Dec; 11(1):. PubMed ID: 36668731 [TBL] [Abstract][Full Text] [Related]
18. Isolation and Characterization of Pb-Solubilizing Bacteria and Their Effects on Pb Uptake by Yahaghi Z; Shirvani M; Nourbakhsh F; de la Peña TC; Pueyo JJ; Talebi M J Microbiol Biotechnol; 2018 Jul; 28(7):1156-1167. PubMed ID: 29975995 [TBL] [Abstract][Full Text] [Related]
19. Promises and potential of Khan AG Int J Phytoremediation; 2020; 22(9):900-915. PubMed ID: 32538143 [TBL] [Abstract][Full Text] [Related]
20. Omics approaches in effective selection and generation of potential plants for phytoremediation of heavy metal from contaminated resources. Yadav R; Singh G; Santal AR; Singh NP J Environ Manage; 2023 Jun; 336():117730. PubMed ID: 36921476 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]