These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 38363638)

  • 1. Magnetic-Actuated Jumping of Droplets on Superhydrophobic Grooved Surfaces: A Versatile Strategy for Three-Dimensional Droplet Transportation.
    Huang Y; Wen G; Fan Y; He M; Sun W; Tian X; Huang S
    ACS Nano; 2024 Feb; 18(8):6359-6372. PubMed ID: 38363638
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bidirectional Droplet Manipulation on Magnetically Actuated Superhydrophobic Ratchet Surfaces.
    Son C; Yang Z; Kim S; Ferreira PM; Feng J; Kim S
    ACS Nano; 2023 Dec; 17(23):23702-23713. PubMed ID: 37856876
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-speed directional transport of condensate droplets on superhydrophobic saw-tooth surfaces.
    Hou H; Wu X; Hu Z; Gao S; Wu Y; Lin Y; Dai L; Zou G; Liu L; Yuan Z
    J Colloid Interface Sci; 2023 Nov; 649():290-301. PubMed ID: 37352560
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coalescence-Induced Droplet Jumping on Superhydrophobic Surfaces with Annular Wedge-Shaped Micropillar Arrays.
    Hou H; Wu X; Hu Z; Gao S; Yuan Z
    Langmuir; 2023 Dec; 39(51):18825-18833. PubMed ID: 38096374
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multifunctional Magnetocontrollable Superwettable-Microcilia Surface for Directional Droplet Manipulation.
    Ben S; Zhou T; Ma H; Yao J; Ning Y; Tian D; Liu K; Jiang L
    Adv Sci (Weinh); 2019 Sep; 6(17):1900834. PubMed ID: 31508285
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unidirectional Fast Growth and Forced Jumping of Stretched Droplets on Nanostructured Microporous Surfaces.
    Aili A; Li H; Alhosani MH; Zhang T
    ACS Appl Mater Interfaces; 2016 Aug; 8(33):21776-86. PubMed ID: 27486890
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of Coalescence-Induced Droplet Jumping Height on Hierarchical Superhydrophobic Surfaces.
    Chen X; Weibel JA; Garimella SV
    ACS Omega; 2017 Jun; 2(6):2883-2890. PubMed ID: 31457623
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Loss-Free Photo-Manipulation of Droplets by Pyroelectro-Trapping on Superhydrophobic Surfaces.
    Tang X; Wang L
    ACS Nano; 2018 Sep; 12(9):8994-9004. PubMed ID: 30125483
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hierarchical Superhydrophobic Surfaces with Micropatterned Nanowire Arrays for High-Efficiency Jumping Droplet Condensation.
    Wen R; Xu S; Zhao D; Lee YC; Ma X; Yang R
    ACS Appl Mater Interfaces; 2017 Dec; 9(51):44911-44921. PubMed ID: 29214806
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electric-field-enhanced condensation on superhydrophobic nanostructured surfaces.
    Miljkovic N; Preston DJ; Enright R; Wang EN
    ACS Nano; 2013 Dec; 7(12):11043-54. PubMed ID: 24261667
    [TBL] [Abstract][Full Text] [Related]  

  • 11. How coalescing droplets jump.
    Enright R; Miljkovic N; Sprittles J; Nolan K; Mitchell R; Wang EN
    ACS Nano; 2014 Oct; 8(10):10352-62. PubMed ID: 25171210
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Digital Microfluidics: Magnetic Transportation and Coalescence of Sessile Droplets on Hydrophobic Surfaces.
    Hassan MR; Zhang J; Wang C
    Langmuir; 2021 May; 37(19):5823-5837. PubMed ID: 33961445
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultimate jumping of coalesced droplets on superhydrophobic surfaces.
    Yuan Z; Gao S; Hu Z; Dai L; Hou H; Chu F; Wu X
    J Colloid Interface Sci; 2021 Apr; 587():429-436. PubMed ID: 33383432
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coalescence-Induced Droplet Jumping on Honeycomb Bionic Superhydrophobic Surfaces.
    Gao Y; Ke Z; Yang W; Wang Z; Zhang Y; Wu W
    Langmuir; 2022 Aug; 38(32):9981-9991. PubMed ID: 35917142
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Droplet manipulation on superhydrophobic surfaces based on external stimulation: A review.
    Yang C; Zeng Q; Huang J; Guo Z
    Adv Colloid Interface Sci; 2022 Aug; 306():102724. PubMed ID: 35780752
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self-Enhancement of Coalescence-Induced Droplet Jumping on Superhydrophobic Surfaces with an Asymmetric V-Groove.
    Lu D; Zhao M; Zhang H; Yang Y; Zheng Y
    Langmuir; 2020 May; 36(19):5444-5453. PubMed ID: 32311257
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Numerical Investigation on Coalescence-Induced Jumping of Centripetal Moving Droplets.
    Gao S; Wu X
    Langmuir; 2022 Oct; 38(41):12674-12681. PubMed ID: 36201740
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coalescence-Induced Jumping Droplets on Nanostructured Biphilic Surfaces with Contact Electrification Effects.
    Zhu Y; Tso CY; Ho TC; Leung MKH; Yao S
    ACS Appl Mater Interfaces; 2021 Mar; 13(9):11470-11479. PubMed ID: 33630565
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Designing a Superhydrophobic Surface for Enhanced Atmospheric Corrosion Resistance Based on Coalescence-Induced Droplet Jumping Behavior.
    Chen X; Wang P; Zhang D
    ACS Appl Mater Interfaces; 2019 Oct; 11(41):38276-38284. PubMed ID: 31529958
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Directional Movement of Droplets in Grooves: Suspended or Immersed?
    Xu W; Lan Z; Peng B; Wen R; Chen Y; Ma X
    Sci Rep; 2016 Jan; 6():18836. PubMed ID: 26743167
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.