These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 38363788)

  • 41. Mechanisms of motor adaptation in reactive balance control.
    Welch TD; Ting LH
    PLoS One; 2014; 9(5):e96440. PubMed ID: 24810991
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Generalization of motor adaptation to repeated-slip perturbation across tasks.
    Wang TY; Bhatt T; Yang F; Pai YC
    Neuroscience; 2011 Apr; 180():85-95. PubMed ID: 21352898
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Rapid adaptation to Coriolis force perturbations of voluntary body sway.
    Bakshi A; DiZio P; Lackner JR
    J Neurophysiol; 2019 Jun; 121(6):2028-2041. PubMed ID: 30943090
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Center of mass velocity-based predictions in balance recovery following pelvis perturbations during human walking.
    Vlutters M; van Asseldonk EH; van der Kooij H
    J Exp Biol; 2016 May; 219(Pt 10):1514-23. PubMed ID: 26994171
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Age-related alterations in reactive stepping following unexpected mediolateral perturbations during gait initiation.
    Shulman D; Spencer A; Vallis LA
    Gait Posture; 2018 Jul; 64():130-134. PubMed ID: 29902716
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Age-related adaptation of the body's kinematic responses to unpredictable trip perturbations induced by a split-belt treadmill
    Yoo D; Lee C; Ahn J; Lee BC
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38083763
    [TBL] [Abstract][Full Text] [Related]  

  • 47. An effective balancing response to lateral perturbations at pelvis level during slow walking requires control in all three planes of motion.
    Matjačić Z; Zadravec M; Olenšek A
    J Biomech; 2017 Jul; 60():79-90. PubMed ID: 28669548
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Older adults utilize less efficient postural adaptations when they are uncertain about the magnitude of a perturbation.
    Kaewmanee T; Liang H; Madrid KC; Aruin AS
    Hum Mov Sci; 2022 Oct; 85():102996. PubMed ID: 36049269
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Exposure to trips and slips with increasing unpredictability while walking can improve balance recovery responses with minimum predictive gait alterations.
    Okubo Y; Brodie MA; Sturnieks DL; Hicks C; Carter H; Toson B; Lord SR
    PLoS One; 2018; 13(9):e0202913. PubMed ID: 30226887
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Transfer of reactive balance adaptation from stance-slip perturbation to stance-trip perturbation in chronic stroke survivors.
    Dusane S; Wang E; Bhatt T
    Restor Neurol Neurosci; 2019; 37(5):469-482. PubMed ID: 31561399
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Application of a Novel Force-Field to Manipulate the Relationship Between Pelvis Motion and Step Width in Human Walking.
    Heitkamp LN; Stimpson KH; Dean JC
    IEEE Trans Neural Syst Rehabil Eng; 2019 Oct; 27(10):2051-2058. PubMed ID: 31545734
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Quantifying dynamic and postural balance difficulty during gait perturbations using stabilizing/destabilizing forces.
    Ilmane N; Croteau S; Duclos C
    J Biomech; 2015 Feb; 48(3):441-8. PubMed ID: 25557656
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Role of muscle coactivation in adaptation of standing posture during arm reaching.
    Pienciak-Siewert A; Horan DP; Ahmed AA
    J Neurophysiol; 2020 Feb; 123(2):529-547. PubMed ID: 31851559
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Children use different anticipatory control strategies than adults to circumvent an obstacle in the travel path.
    Vallis LA; McFadyen BJ
    Exp Brain Res; 2005 Nov; 167(1):119-27. PubMed ID: 16177831
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Error signals driving locomotor adaptation: cutaneous feedback from the foot is used to adapt movement during perturbed walking.
    Choi JT; Jensen P; Nielsen JB; Bouyer LJ
    J Physiol; 2016 Oct; 594(19):5673-84. PubMed ID: 27218896
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Mind your step: Target walking task reveals gait disturbance in individuals with incomplete spinal cord injury.
    Mohammadzada F; Zipser CM; Easthope CA; Halliday DM; Conway BA; Curt A; Schubert M
    J Neuroeng Rehabil; 2022 Mar; 19(1):36. PubMed ID: 35337335
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Influence of interaction force levels on degree of motor adaptation in a stable dynamic force field.
    Lai EJ; Hodgson AJ; Milner TE
    Exp Brain Res; 2003 Nov; 153(1):76-83. PubMed ID: 12955384
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Adaptive feedback potential in dynamic stability during disturbed walking in the elderly.
    Bierbaum S; Peper A; Karamanidis K; Arampatzis A
    J Biomech; 2011 Jul; 44(10):1921-6. PubMed ID: 21555126
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Age differences in anticipatory and executory mechanisms of gait initiation following unexpected balance perturbations.
    Laudani L; Rum L; Valle MS; Macaluso A; Vannozzi G; Casabona A
    Eur J Appl Physiol; 2021 Feb; 121(2):465-478. PubMed ID: 33106932
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Aging and balance control in response to external perturbations: role of anticipatory and compensatory postural mechanisms.
    Kanekar N; Aruin AS
    Age (Dordr); 2014 Jun; 36(3):9621. PubMed ID: 24532389
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.