These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 38364007)

  • 1. Glass spectrum, excess wing phenomenon, and master curves in molecular glass formers: A multi-method approach.
    Rössler EA; Becher M
    J Chem Phys; 2024 Feb; 160(7):. PubMed ID: 38364007
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On the nature of the high-frequency relaxation in a molecular glass former: a joint study of glycerol by field cycling NMR, dielectric spectroscopy, and light scattering.
    Gainaru C; Lips O; Troshagina A; Kahlau R; Brodin A; Fujara F; Rössler EA
    J Chem Phys; 2008 May; 128(17):174505. PubMed ID: 18465928
    [TBL] [Abstract][Full Text] [Related]  

  • 3. NMR Relaxometry Accessing the Relaxation Spectrum in Molecular Glass Formers.
    Becher M; Lichtinger A; Minikejew R; Vogel M; Rössler EA
    Int J Mol Sci; 2022 May; 23(9):. PubMed ID: 35563506
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The dynamic susceptibility in glass forming molecular liquids: the search for universal relaxation patterns II.
    Blochowicz T; Gainaru C; Medick P; Tschirwitz C; Rössler EA
    J Chem Phys; 2006 Apr; 124(13):134503. PubMed ID: 16613457
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Universal and non-universal features of the dynamic susceptibility of supercooled liquids.
    Brodin A; Rössler EA
    J Phys Condens Matter; 2006 Sep; 18(37):8481-92. PubMed ID: 21690902
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evolution of the dynamic susceptibility in molecular glass formers: results from light scattering, dielectric spectroscopy, and NMR.
    Petzold N; Schmidtke B; Kahlau R; Bock D; Meier R; Micko B; Kruk D; Rössler EA
    J Chem Phys; 2013 Mar; 138(12):12A510. PubMed ID: 23556761
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Field-cycling
    Becher M; Flämig M; Rössler EA
    J Chem Phys; 2022 Feb; 156(7):074502. PubMed ID: 35183081
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evolution of excess wing and beta-process in simple glass formers.
    Gainaru C; Kahlau R; Rössler EA; Böhmer R
    J Chem Phys; 2009 Nov; 131(18):184510. PubMed ID: 19916615
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Systematic differences in the relaxation stretching of polar molecular liquids probed by dielectric vs magnetic resonance and photon correlation spectroscopy.
    Körber T; Stäglich R; Gainaru C; Böhmer R; Rössler EA
    J Chem Phys; 2020 Sep; 153(12):124510. PubMed ID: 33003722
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Primary and secondary relaxations in supercooled eugenol and isoeugenol at ambient and elevated pressures: dependence on chemical microstructure.
    Kaminska E; Kaminski K; Paluch M; Ngai KL
    J Chem Phys; 2006 Apr; 124(16):164511. PubMed ID: 16674150
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental evidence of β-relaxation and its structural origin in ZIF-62 glass.
    Peng SX; Zhu YY; Li G; Luo Y; Han X; Liu SY
    Soft Matter; 2023 Jul; 19(29):5575-5582. PubMed ID: 37439095
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Classification of secondary relaxation in glass-formers based on dynamic properties.
    Ngai KL; Paluch M
    J Chem Phys; 2004 Jan; 120(2):857-73. PubMed ID: 15267922
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative analysis of dielectric, shear mechanical and light scattering response functions in polar supercooled liquids.
    Ngai KL; Wojnarowska Z; Paluch M
    Sci Rep; 2021 Nov; 11(1):22142. PubMed ID: 34772980
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Excess wing in the dielectric loss of glass formers: A johari-goldstein beta relaxation?
    Schneider U; Brand R; Lunkenheimer P; Loidl A
    Phys Rev Lett; 2000 Jun; 84(24):5560-3. PubMed ID: 10990994
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dielectric relaxation and proton field-cycling NMR relaxometry study of dimethyl sulfoxide/glycerol mixtures down to glass-forming temperatures.
    Flämig M; Gabrielyan L; Minikejew R; Markarian S; Rössler EA
    Phys Chem Chem Phys; 2020 Apr; 22(16):9014-9028. PubMed ID: 32293628
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nuclear Spin Relaxation in Viscous Liquids: Relaxation Stretching of Single-Particle Probes.
    Becher M; Körber T; Döß A; Hinze G; Gainaru C; Böhmer R; Vogel M; Rössler EA
    J Phys Chem B; 2021 Dec; 125(49):13519-13532. PubMed ID: 34860530
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamics of asymmetric binary glass formers. I. A dielectric and nuclear magnetic resonance spectroscopy study.
    Kahlau R; Bock D; Schmidtke B; Rössler EA
    J Chem Phys; 2014 Jan; 140(4):044509. PubMed ID: 25669557
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pressure evolution of the excess wing in a type-B glass former.
    Casalini R; Roland CM
    Phys Rev Lett; 2003 Jul; 91(1):015702. PubMed ID: 12906552
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interpreting the nonlinear dielectric response of glass-formers in terms of the coupling model.
    Ngai KL
    J Chem Phys; 2015 Mar; 142(11):114502. PubMed ID: 25796256
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Broadband dielectric spectroscopy on benzophenone: alpha relaxation, beta relaxation, and mode coupling theory.
    Lunkenheimer P; Pardo LC; Köhler M; Loidl A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Mar; 77(3 Pt 1):031506. PubMed ID: 18517387
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.