BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 38364008)

  • 1. Solving the time-dependent protein distributions for autoregulated bursty gene expression using spectral decomposition.
    Wu B; Holehouse J; Grima R; Jia C
    J Chem Phys; 2024 Feb; 160(7):. PubMed ID: 38364008
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Small protein number effects in stochastic models of autoregulated bursty gene expression.
    Jia C; Grima R
    J Chem Phys; 2020 Feb; 152(8):084115. PubMed ID: 32113345
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Single-cell stochastic gene expression kinetics with coupled positive-plus-negative feedback.
    Jia C; Wang LY; Yin GG; Zhang MQ
    Phys Rev E; 2019 Nov; 100(5-1):052406. PubMed ID: 31869986
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamical phase diagram of an auto-regulating gene in fast switching conditions.
    Jia C; Grima R
    J Chem Phys; 2020 May; 152(17):174110. PubMed ID: 32384856
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Solving the chemical master equation for monomolecular reaction systems and beyond: a Doi-Peliti path integral view.
    Vastola JJ
    J Math Biol; 2021 Oct; 83(5):48. PubMed ID: 34635944
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stochastic modeling and numerical simulation of gene regulatory networks with protein bursting.
    Pájaro M; Alonso AA; Otero-Muras I; Vázquez C
    J Theor Biol; 2017 May; 421():51-70. PubMed ID: 28341132
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Distributions for negative-feedback-regulated stochastic gene expression: dimension reduction and numerical solution of the chemical master equation.
    Zeron ES; Santillán M
    J Theor Biol; 2010 May; 264(2):377-85. PubMed ID: 20144620
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Emergent Lévy behavior in single-cell stochastic gene expression.
    Jia C; Zhang MQ; Qian H
    Phys Rev E; 2017 Oct; 96(4-1):040402. PubMed ID: 29347590
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reduction of the chemical master equation for gene regulatory networks using proper generalized decompositions.
    Ammar A; Cueto E; Chinesta F
    Int J Numer Method Biomed Eng; 2012 Sep; 28(9):960-73. PubMed ID: 22941925
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Steady-state fluctuations of a genetic feedback loop: an exact solution.
    Grima R; Schmidt DR; Newman TJ
    J Chem Phys; 2012 Jul; 137(3):035104. PubMed ID: 22830733
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exact computation of probability landscape of stochastic networks of Single Input and Coupled Toggle Switch Modules.
    Terebus A; Cao Y; Liang J
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():5228-31. PubMed ID: 25571172
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Limit theorems for generalized density-dependent Markov chains and bursty stochastic gene regulatory networks.
    Chen X; Jia C
    J Math Biol; 2020 Mar; 80(4):959-994. PubMed ID: 31754779
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Poisson representation: a bridge between discrete and continuous models of stochastic gene regulatory networks.
    Wang X; Li Y; Jia C
    J R Soc Interface; 2023 Nov; 20(208):20230467. PubMed ID: 38016635
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of bursty synthesis in organelle biogenesis.
    Banerjee B; Das D
    Math Biosci; 2024 Apr; 370():109156. PubMed ID: 38346665
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Shaping protein distributions in stochastic self-regulated gene expression networks.
    Pájaro M; Alonso AA; Vázquez C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Sep; 92(3):032712. PubMed ID: 26465503
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exact distributions for stochastic gene expression models with bursting and feedback.
    Kumar N; Platini T; Kulkarni RV
    Phys Rev Lett; 2014 Dec; 113(26):268105. PubMed ID: 25615392
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Time-dependent propagators for stochastic models of gene expression: an analytical method.
    Veerman F; Marr C; Popović N
    J Math Biol; 2018 Aug; 77(2):261-312. PubMed ID: 29247320
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling bursty transcription and splicing with the chemical master equation.
    Gorin G; Pachter L
    Biophys J; 2022 Mar; 121(6):1056-1069. PubMed ID: 35143775
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mixture distributions in a stochastic gene expression model with delayed feedback: a WKB approximation approach.
    Bokes P; Borri A; Palumbo P; Singh A
    J Math Biol; 2020 Jul; 81(1):343-367. PubMed ID: 32583030
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coupling gene expression dynamics to cell size dynamics and cell cycle events: Exact and approximate solutions of the extended telegraph model.
    Jia C; Grima R
    iScience; 2023 Jan; 26(1):105746. PubMed ID: 36619980
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.