These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. Wave-induced fluid flow in random porous media: attenuation and dispersion of elastic waves. Müller TM; Gurevich B J Acoust Soc Am; 2005 May; 117(5):2732-41. PubMed ID: 15957744 [TBL] [Abstract][Full Text] [Related]
7. Dispersion and attenuation due to scattering from heterogeneities of the frame bulk modulus of a poroelastic medium. Hefner BT; Jackson DR J Acoust Soc Am; 2010 Jun; 127(6):3372-84. PubMed ID: 20550237 [TBL] [Abstract][Full Text] [Related]
8. A first-order statistical smoothing approximation for the coherent wave field in random porous random media. Müller TM; Gurevich B J Acoust Soc Am; 2005 Apr; 117(4 Pt 1):1796-805. PubMed ID: 15898626 [TBL] [Abstract][Full Text] [Related]
9. Compressional wave propagation in saturated porous media and its numerical analysis using a space-time conservation element and solution element method. Yang D Rev Sci Instrum; 2021 Dec; 92(12):125108. PubMed ID: 34972452 [TBL] [Abstract][Full Text] [Related]
10. A model for wave propagation in a porous solid saturated by a three-phase fluid. Santos JE; Savioli GB J Acoust Soc Am; 2016 Feb; 139(2):693-702. PubMed ID: 26936553 [TBL] [Abstract][Full Text] [Related]
11. Numerical Simulation Study on the Influence of Fracture on Borehole Wave Modes: Insights from Fracture Width, Filling Condition, and Acoustic Frequency. Gao Z; Wu D; Wu H; Liu P; Cai M; Zhang C; Tang J Sensors (Basel); 2024 Jun; 24(12):. PubMed ID: 38931741 [TBL] [Abstract][Full Text] [Related]
12. Wave equations for porous media described by the Biot model. Chandrasekaran SN; Näsholm SP; Holm S J Acoust Soc Am; 2022 Apr; 151(4):2576. PubMed ID: 35461498 [TBL] [Abstract][Full Text] [Related]
13. Analysis of multiscale scattering and poroelastic attenuation in a real sedimentary rock sequence. Hackert CL; Parra JO J Acoust Soc Am; 2000 Jun; 107(6):3028-34. PubMed ID: 10875348 [TBL] [Abstract][Full Text] [Related]
14. Nonlinear wave propagation in porous materials based on the Biot theory. Tong LH; Liu YS; Geng DX; Lai SK J Acoust Soc Am; 2017 Aug; 142(2):756. PubMed ID: 28863584 [TBL] [Abstract][Full Text] [Related]
15. Numerical simulation of wave-induced fluid flow seismic attenuation based on the Cole-Cole model. Picotti S; Carcione JM J Acoust Soc Am; 2017 Jul; 142(1):134. PubMed ID: 28764469 [TBL] [Abstract][Full Text] [Related]
17. Reflection and transmission coefficients of a single layer in poroelastic media. Corredor RM; Santos JE; Gauzellino PM; Carcione JM J Acoust Soc Am; 2014 Jun; 135(6):3151-62. PubMed ID: 24907781 [TBL] [Abstract][Full Text] [Related]
18. Seismic wave attenuation and dispersion due to wave-induced fluid flow in rocks with strong permeability fluctuations. Germán Rubino J; Monachesi LB; Müller TM; Guarracino L; Holliger K J Acoust Soc Am; 2013 Dec; 134(6):4742. PubMed ID: 25669286 [TBL] [Abstract][Full Text] [Related]
19. Propagation characteristics of interface waves between a porous medium and a sediment-containing two-phase fluid. Han Q; Qi L; Shan M; Yin C; Jiang X; Zhu C Ultrasonics; 2017 Nov; 81():73-80. PubMed ID: 28595165 [TBL] [Abstract][Full Text] [Related]
20. Phenomenological model of propagation of the elastic waves in a fluid-saturated porous solid with nonzero boundary slip velocity. Tsiklauri D J Acoust Soc Am; 2002 Sep; 112(3 Pt 1):843-9. PubMed ID: 12243170 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]