These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 38364213)

  • 1. Recent Advances and Developments in Injectable Conductive Polymer Gels for Bioelectronics.
    Peñas-Núñez SJ; Mecerreyes D; Criado-Gonzalez M
    ACS Appl Bio Mater; 2024 Feb; ():. PubMed ID: 38364213
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tunable, conductive, self-healing, adhesive and injectable hydrogels for bioelectronics and tissue regeneration applications.
    Panwar V; Babu A; Sharma A; Thomas J; Chopra V; Malik P; Rajput S; Mittal M; Guha R; Chattopadhyay N; Mandal D; Ghosh D
    J Mater Chem B; 2021 Aug; 9(31):6260-6270. PubMed ID: 34338263
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Highly Conductive PPy-PEDOT:PSS Hybrid Hydrogel with Superior Biocompatibility for Bioelectronics Application.
    Ren X; Yang M; Yang T; Xu C; Ye Y; Wu X; Zheng X; Wang B; Wan Y; Luo Z
    ACS Appl Mater Interfaces; 2021 Jun; 13(21):25374-25382. PubMed ID: 34009925
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conductive Gels: Properties and Applications of Nanoelectronics.
    Trung ND; Huy DTN; Jade Catalan Opulencia M; Lafta HA; Abed AM; Bokov DO; Shomurodov K; Van Thuc Master H; Thaeer Hammid A; Kianfar E
    Nanoscale Res Lett; 2022 May; 17(1):50. PubMed ID: 35499625
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mixed Conductive, Injectable, and Fluorescent Supramolecular Eutectogel Composites.
    Criado-Gonzalez M; Alegret N; Fracaroli AM; Mantione D; Guzmán-González G; Del Olmo R; Tashiro K; Tomé LC; Picchio ML; Mecerreyes D
    Angew Chem Int Ed Engl; 2023 Jun; 62(26):e202301489. PubMed ID: 37129146
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A review on recent advances in polymer and peptide hydrogels.
    Mondal S; Das S; Nandi AK
    Soft Matter; 2020 Feb; 16(6):1404-1454. PubMed ID: 31984400
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conjugated Polymers in Bioelectronics.
    Inal S; Rivnay J; Suiu AO; Malliaras GG; McCulloch I
    Acc Chem Res; 2018 Jun; 51(6):1368-1376. PubMed ID: 29874033
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rational design of injectable conducting polymer-based hydrogels for tissue engineering.
    Yu C; Yao F; Li J
    Acta Biomater; 2022 Feb; 139():4-21. PubMed ID: 33894350
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Poly(3,4-ethylenedioxythiophene) (PEDOT) Derivatives: Innovative Conductive Polymers for Bioelectronics.
    Mantione D; Del Agua I; Sanchez-Sanchez A; Mecerreyes D
    Polymers (Basel); 2017 Aug; 9(8):. PubMed ID: 30971030
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Degradable conductive self-healing hydrogels based on dextran-graft-tetraaniline and N-carboxyethyl chitosan as injectable carriers for myoblast cell therapy and muscle regeneration.
    Guo B; Qu J; Zhao X; Zhang M
    Acta Biomater; 2019 Jan; 84():180-193. PubMed ID: 30528606
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conductive and Adhesive Granular Alginate Hydrogels for On-Tissue Writable Bioelectronics.
    Kim S; Choi H; Son D; Shin M
    Gels; 2023 Feb; 9(2):. PubMed ID: 36826337
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular Approach to Conjugated Polymers with Biomimetic Properties.
    Baek P; Voorhaar L; Barker D; Travas-Sejdic J
    Acc Chem Res; 2018 Jul; 51(7):1581-1589. PubMed ID: 29897228
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recent Progress on Self-Healable Conducting Polymers.
    Li Y; Zhou X; Sarkar B; Gagnon-Lafrenais N; Cicoira F
    Adv Mater; 2022 Jun; 34(24):e2108932. PubMed ID: 35043469
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tissue-Mimetic Supramolecular Polymer Networks for Bioelectronics.
    O'Neill SJK; Huang Z; Ahmed MH; Boys AJ; Velasco-Bosom S; Li J; Owens RM; McCune JA; Malliaras GG; Scherman OA
    Adv Mater; 2023 Jan; 35(1):e2207634. PubMed ID: 36314408
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multifunctional Nanostructured Conductive Polymer Gels: Synthesis, Properties, and Applications.
    Zhao F; Shi Y; Pan L; Yu G
    Acc Chem Res; 2017 Jul; 50(7):1734-1743. PubMed ID: 28649845
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Weak Bond-Based Injectable and Stimuli Responsive Hydrogels for Biomedical Applications.
    Ding X; Wang Y
    J Mater Chem B; 2017 Feb; 5(5):887-906. PubMed ID: 29062484
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineering nanocomposite hydrogels using dynamic bonds.
    Lu CH; Yu CH; Yeh YC
    Acta Biomater; 2021 Aug; 130():66-79. PubMed ID: 34098090
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PLA-PEG-PLA and its electroactive tetraaniline copolymer as multi-interactive injectable hydrogels for tissue engineering.
    Cui H; Shao J; Wang Y; Zhang P; Chen X; Wei Y
    Biomacromolecules; 2013 Jun; 14(6):1904-12. PubMed ID: 23611017
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Soft and Ion-Conducting Materials in Bioelectronics: From Conducting Polymers to Hydrogels.
    Jia M; Rolandi M
    Adv Healthc Mater; 2020 Mar; 9(5):e1901372. PubMed ID: 31976634
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conducting Polymer Nanoparticles with Intrinsic Aqueous Dispersibility for Conductive Hydrogels.
    Tropp J; Collins CP; Xie X; Daso RE; Mehta AS; Patel SP; Reddy MM; Levin SE; Sun C; Rivnay J
    Adv Mater; 2024 Jan; 36(1):e2306691. PubMed ID: 37680065
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.