BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 38364321)

  • 1. Reprogramming T-cell metabolism to enhance adoptive cell therapies.
    Kates M; Saibil SD
    Int Immunol; 2024 Apr; 36(6):261-278. PubMed ID: 38364321
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Altered cancer metabolism and implications for next-generation CAR T-cell therapies.
    Ramapriyan R; Vykunta VS; Vandecandelaere G; Richardson LGK; Sun J; Curry WT; Choi BD
    Pharmacol Ther; 2024 Jul; 259():108667. PubMed ID: 38763321
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineering CAR-T Cells for Next-Generation Cancer Therapy.
    Hong M; Clubb JD; Chen YY
    Cancer Cell; 2020 Oct; 38(4):473-488. PubMed ID: 32735779
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Solid Tumors Challenges and New Insights of CAR T Cell Engineering.
    Tahmasebi S; Elahi R; Esmaeilzadeh A
    Stem Cell Rev Rep; 2019 Oct; 15(5):619-636. PubMed ID: 31161552
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The tumor microenvironment as a metabolic barrier to effector T cells and immunotherapy.
    Lim AR; Rathmell WK; Rathmell JC
    Elife; 2020 May; 9():. PubMed ID: 32367803
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Manipulating the tumor microenvironment by adoptive cell transfer of CAR T-cells.
    Gowrishankar K; Birtwistle L; Micklethwaite K
    Mamm Genome; 2018 Dec; 29(11-12):739-756. PubMed ID: 29987406
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A metabolic switch to memory CAR T cells: Implications for cancer treatment.
    Rostamian H; Fallah-Mehrjardi K; Khakpoor-Koosheh M; Pawelek JM; Hadjati J; Brown CE; Mirzaei HR
    Cancer Lett; 2021 Mar; 500():107-118. PubMed ID: 33290868
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Remodeling metabolic fitness: Strategies for improving the efficacy of chimeric antigen receptor T cell therapy.
    Shen L; Xiao Y; Tian J; Lu Z
    Cancer Lett; 2022 Mar; 529():139-152. PubMed ID: 35007698
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chimeric Antigen Receptors for the Tumour Microenvironment.
    Habib R; Nagrial A; Micklethwaite K; Gowrishankar K
    Adv Exp Med Biol; 2020; 1263():117-143. PubMed ID: 32588326
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Targeting SLC1A5 and SLC3A2/SLC7A5 as a Potential Strategy to Strengthen Anti-Tumor Immunity in the Tumor Microenvironment.
    Nachef M; Ali AK; Almutairi SM; Lee SH
    Front Immunol; 2021; 12():624324. PubMed ID: 33953707
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Augmenting engineered T-cell strategies in solid cancers through epigenetic priming.
    Nielsen AY; Ormhøj M; Traynor S; Gjerstorff MF
    Cancer Immunol Immunother; 2020 Nov; 69(11):2169-2178. PubMed ID: 32648166
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Advances in CAR-T Cell Genetic Engineering Strategies to Overcome Hurdles in Solid Tumors Treatment.
    Andrea AE; Chiron A; Mallah S; Bessoles S; Sarrabayrouse G; Hacein-Bey-Abina S
    Front Immunol; 2022; 13():830292. PubMed ID: 35211124
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reprogramming the tumor microenvironment to enhance adoptive cellular therapy.
    Beavis PA; Slaney CY; Kershaw MH; Gyorki D; Neeson PJ; Darcy PK
    Semin Immunol; 2016 Feb; 28(1):64-72. PubMed ID: 26611350
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Immunometabolism in haematopoietic stem cell transplantation and adoptive cellular therapies.
    Braverman EL; Waltz G; Byersdorfer CA
    Curr Opin Hematol; 2020 Nov; 27(6):353-359. PubMed ID: 33003083
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cell metabolism-based optimization strategy of CAR-T cell function in cancer therapy.
    Li W; Pan X; Chen L; Cui H; Mo S; Pan Y; Shen Y; Shi M; Wu J; Luo F; Liu J; Li N
    Front Immunol; 2023; 14():1186383. PubMed ID: 37342333
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The potential and promise for clinical application of adoptive T cell therapy in cancer.
    Li Y; Zheng Y; Liu T; Liao C; Shen G; He Z
    J Transl Med; 2024 May; 22(1):413. PubMed ID: 38693513
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hurdle or thruster: Glucose metabolism of T cells in anti-tumour immunity.
    Zhang S; Zhang X; Yang H; Liang T; Bai X
    Biochim Biophys Acta Rev Cancer; 2024 Jan; 1879(1):189022. PubMed ID: 37993001
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolic adaptations determine whether natural killer cells fail or thrive within the tumor microenvironment.
    Moinuddin A; Poznanski SM; Portillo AL; Monteiro JK; Ashkar AA
    Immunol Rev; 2024 May; 323(1):19-39. PubMed ID: 38459782
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Immune Escape Mechanisms and Future Prospects for Immunotherapy in Neuroblastoma.
    Vanichapol T; Chutipongtanate S; Anurathapan U; Hongeng S
    Biomed Res Int; 2018; 2018():1812535. PubMed ID: 29682521
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tumor microenvironment and CAR-T cell immunotherapy in B-cell lymphoma.
    Cai F; Zhang J; Gao H; Shen H
    Eur J Haematol; 2024 Feb; 112(2):223-235. PubMed ID: 37706523
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.