BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 38364337)

  • 1. The green cupredoxin CopI is a multicopper protein able to oxidize Cu(I).
    Rossotti M; Arceri D; Mansuelle P; Bornet O; Durand A; Ouchane S; Launay H; Dorlet P
    J Inorg Biochem; 2024 May; 254():112503. PubMed ID: 38364337
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A periplasmic cupredoxin with a green CuT1.5 center is involved in bacterial copper tolerance.
    Durand A; Fouesnard M; Bourbon ML; Steunou AS; Lojou E; Dorlet P; Ouchane S
    Metallomics; 2021 Dec; 13(12):. PubMed ID: 34791351
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Orchestrating copper binding: structure and variations on the cupredoxin fold.
    Guo J; Fisher OS
    J Biol Inorg Chem; 2022 Sep; 27(6):529-540. PubMed ID: 35994119
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Basic requirements for a metal-binding site in a protein: the influence of loop shortening on the cupredoxin azurin.
    Li C; Yanagisawa S; Martins BM; Messerschmidt A; Banfield MJ; Dennison C
    Proc Natl Acad Sci U S A; 2006 May; 103(19):7258-63. PubMed ID: 16651527
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of copper ligand mutations on a cupredoxin with a green copper center.
    Roger M; Sciara G; Biaso F; Lojou E; Wang X; Bauzan M; Giudici-Orticoni MT; Vila AJ; Ilbert M
    Biochim Biophys Acta Bioenerg; 2017 May; 1858(5):351-359. PubMed ID: 28214520
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of copper in folding and stability of cupredoxin-like copper-carrier protein CopC.
    Hussain F; Sedlak E; Wittung-Stafshede P
    Arch Biochem Biophys; 2007 Nov; 467(1):58-66. PubMed ID: 17889826
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spectroscopic characterization of a green copper site in a single-domain cupredoxin.
    Roger M; Biaso F; Castelle CJ; Bauzan M; Chaspoul F; Lojou E; Sciara G; Caffarri S; Giudici-Orticoni MT; Ilbert M
    PLoS One; 2014; 9(6):e98941. PubMed ID: 24932914
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rack-induced metal binding vs. flexibility: Met121His azurin crystal structures at different pH.
    Messerschmidt A; Prade L; Kroes SJ; Sanders-Loehr J; Huber R; Canters GW
    Proc Natl Acad Sci U S A; 1998 Mar; 95(7):3443-8. PubMed ID: 9520385
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The importance of the long type 1 copper-binding loop of nitrite reductase for structure and function.
    Sato K; Firbank SJ; Li C; Banfield MJ; Dennison C
    Chemistry; 2008; 14(19):5820-8. PubMed ID: 18491346
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spectroscopic characterization of a high-potential lipo-cupredoxin found in Streptomyces coelicolor.
    Worrall JA; Machczynski MC; Keijser BJ; di Rocco G; Ceola S; Ubbink M; Vijgenboom E; Canters GW
    J Am Chem Soc; 2006 Nov; 128(45):14579-89. PubMed ID: 17090042
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Histidine Residue and a Tetranuclear Cuprous-thiolate Cluster Dominate the Copper Loading Landscape of a Copper Storage Protein from Streptomyces lividans.
    Straw ML; Hough MA; Wilson MT; Worrall JAR
    Chemistry; 2019 Aug; 25(45):10678-10688. PubMed ID: 31111982
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Carbene in Cupredoxin Protein Scaffolds: Replacement of a Histidine Ligand in the Active Site Substantially Alters Copper Redox Properties.
    Planchestainer M; Segaud N; Shanmugam M; McMaster J; Paradisi F; Albrecht M
    Angew Chem Int Ed Engl; 2018 Aug; 57(33):10677-10682. PubMed ID: 29949236
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Copper-induced spectroscopic and structural changes in short peptides derived from azurin.
    Das D; Mitra S; Kumar R; Banerjee S; Koti Ainavarapu SR
    Arch Biochem Biophys; 2020 Jul; 687():108388. PubMed ID: 32343975
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Function and versatile location of Met-rich inserts in blue oxidases involved in bacterial copper resistance.
    Roulling F; Godin A; Feller G
    Biochimie; 2022 Mar; 194():118-126. PubMed ID: 34982982
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Traversing the Red-Green-Blue Color Spectrum in Rationally Designed Cupredoxins.
    Koebke KJ; Alfaro VS; Pinter TBJ; Deb A; Lehnert N; Tard C; Penner-Hahn JE; Pecoraro VL
    J Am Chem Soc; 2020 Sep; 142(36):15282-15294. PubMed ID: 32786767
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of loop shortening on the metal binding site of cupredoxin pseudoazurin.
    Velarde M; Huber R; Yanagisawa S; Dennison C; Messerschmidt A
    Biochemistry; 2007 Sep; 46(35):9981-91. PubMed ID: 17685636
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metal-binding loop length is a determinant of the pKa of a histidine ligand at a type 1 copper site.
    Li C; Sato K; Monari S; Salard I; Sola M; Banfield MJ; Dennison C
    Inorg Chem; 2011 Jan; 50(2):482-8. PubMed ID: 21141901
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The structural role of the copper-coordinating and surface-exposed histidine residue in the blue copper protein azurin.
    Jeuken LJ; Ubbink M; Bitter JH; van Vliet P; Meyer-Klaucke W; Canters GW
    J Mol Biol; 2000 Jun; 299(3):737-55. PubMed ID: 10835281
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural basis of copper binding by a dimeric periplasmic protein forming a six-helical bundle.
    Yang J; Gao M; Wang J; He C; Wang X; Liu L
    J Inorg Biochem; 2022 Apr; 229():111728. PubMed ID: 35066349
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Purple Cupredoxin from Nitrosopumilus maritimus Containing a Mononuclear Type 1 Copper Center with an Open Binding Site.
    Hosseinzadeh P; Tian S; Marshall NM; Hemp J; Mullen T; Nilges MJ; Gao YG; Robinson H; Stahl DA; Gennis RB; Lu Y
    J Am Chem Soc; 2016 May; 138(20):6324-7. PubMed ID: 27120678
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.