These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 38364446)

  • 1. In vitro neuronal and glial response to magnetically stimulated piezoelectric poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV)/cobalt ferrite (CFO) microspheres.
    Pinho TS; Cibrão JR; Silva D; Barata-Antunes S; Campos J; Afonso JL; Sampaio-Marques B; Ribeiro C; Macedo AS; Martins P; Cunha CB; Lanceros-Mendez S; Salgado AJ
    Biomater Adv; 2024 May; 159():213798. PubMed ID: 38364446
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tailored Biodegradable and Electroactive Poly(Hydroxybutyrate-Co-Hydroxyvalerate) Based Morphologies for Tissue Engineering Applications.
    Amaro L; Correia DM; Marques-Almeida T; Martins PM; Pérez L; Vilas JL; Botelho G; Lanceros-Mendez S; Ribeiro C
    Int J Mol Sci; 2018 Jul; 19(8):. PubMed ID: 30042300
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Piezoelectric 3-D Fibrous Poly(3-hydroxybutyrate)-Based Scaffolds Ultrasound-Mineralized with Calcium Carbonate for Bone Tissue Engineering: Inorganic Phase Formation, Osteoblast Cell Adhesion, and Proliferation.
    Chernozem RV; Surmeneva MA; Shkarina SN; Loza K; Epple M; Ulbricht M; Cecilia A; Krause B; Baumbach T; Abalymov AA; Parakhonskiy BV; Skirtach AG; Surmenev RA
    ACS Appl Mater Interfaces; 2019 May; 11(21):19522-19533. PubMed ID: 31058486
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Morphology Dependence Degradation of Electro- and Magnetoactive Poly(3-hydroxybutyrate-co-hydroxyvalerate) for Tissue Engineering Applications.
    Amaro L; Correia DM; Martins PM; Botelho G; Carabineiro SAC; Ribeiro C; Lanceros-Mendez S
    Polymers (Basel); 2020 Apr; 12(4):. PubMed ID: 32325963
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microfluidic Processing of Piezoelectric and Magnetic Responsive Electroactive Microspheres.
    Martins LA; Ródenas-Rochina J; Salazar D; Cardoso VF; Gómez Ribelles JL; Lanceros-Mendez S
    ACS Appl Polym Mater; 2022 Aug; 4(8):5368-5379. PubMed ID: 36824683
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A comparison study between electrospun polycaprolactone and piezoelectric poly(3-hydroxybutyrate-co-3-hydroxyvalerate) scaffolds for bone tissue engineering.
    Gorodzha SN; Muslimov AR; Syromotina DS; Timin AS; Tcvetkov NY; Lepik KV; Petrova AV; Surmeneva MA; Gorin DA; Sukhorukov GB; Surmenev RA
    Colloids Surf B Biointerfaces; 2017 Dec; 160():48-59. PubMed ID: 28917149
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PVDF and P(VDF-TrFE) Electrospun Scaffolds for Nerve Graft Engineering: A Comparative Study on Piezoelectric and Structural Properties, and In Vitro Biocompatibility.
    Gryshkov O; Al Halabi F; Kuhn AI; Leal-Marin S; Freund LJ; Förthmann M; Meier N; Barker SA; Haastert-Talini K; Glasmacher B
    Int J Mol Sci; 2021 Oct; 22(21):. PubMed ID: 34768804
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Poly(vinylidene) fluoride membranes coated by heparin/collagen layer-by-layer, smart biomimetic approaches for mesenchymal stem cell culture.
    Guillot-Ferriols M; Rodríguez-Hernández JC; Correia DM; Carabineiro SAC; Lanceros-Méndez S; Gómez Ribelles JL; Gallego Ferrer G
    Mater Sci Eng C Mater Biol Appl; 2020 Dec; 117():111281. PubMed ID: 32919642
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Poly (l-lactide-co-caprolactone) scaffolds enhanced with poly (β-hydroxybutyrate-co-β-hydroxyvalerate) microspheres for cartilage regeneration.
    Li C; Zhang J; Li Y; Moran S; Khang G; Ge Z
    Biomed Mater; 2013 Apr; 8(2):025005. PubMed ID: 23385654
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Magnetically Activated Piezoelectric 3D Platform Based on Poly(Vinylidene) Fluoride Microspheres for Osteogenic Differentiation of Mesenchymal Stem Cells.
    Guillot-Ferriols M; García-Briega MI; Tolosa L; Costa CM; Lanceros-Méndez S; Gómez Ribelles JL; Gallego Ferrer G
    Gels; 2022 Oct; 8(10):. PubMed ID: 36286181
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biomedical Applications of the Biopolymer Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV): Drug Encapsulation and Scaffold Fabrication.
    Rodríguez-Cendal AI; Gómez-Seoane I; de Toro-Santos FJ; Fuentes-Boquete IM; Señarís-Rodríguez J; Díaz-Prado SM
    Int J Mol Sci; 2023 Jul; 24(14):. PubMed ID: 37511432
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Scaffold-Based Poly(Vinylidene Fluoride) and Its Copolymers: Materials, Fabrication Methods, Applications, and Perspectives.
    Sun W; Gao C; Liu H; Zhang Y; Guo Z; Lu C; Qiao H; Yang Z; Jin A; Chen J; Dai Q; Liu Y
    ACS Biomater Sci Eng; 2024 May; 10(5):2805-2826. PubMed ID: 38621173
    [TBL] [Abstract][Full Text] [Related]  

  • 13. PHBV microspheres as neural tissue engineering scaffold support neuronal cell growth and axon-dendrite polarization.
    Chen W; Tong YW
    Acta Biomater; 2012 Feb; 8(2):540-8. PubMed ID: 22005329
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Smart Piezoelectric Nanohybrid of Poly(3-hydroxybutyrate-
    Jacob J; More N; Mounika C; Gondaliya P; Kalia K; Kapusetti G
    ACS Appl Bio Mater; 2019 Nov; 2(11):4922-4931. PubMed ID: 35021492
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimized fabrication of Ca-P/PHBV nanocomposite scaffolds via selective laser sintering for bone tissue engineering.
    Duan B; Cheung WL; Wang M
    Biofabrication; 2011 Mar; 3(1):015001. PubMed ID: 21245522
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Additive Manufacturing of Poly(3-hydroxybutyrate-
    Pecorini G; Braccini S; Parrini G; Chiellini F; Puppi D
    Int J Mol Sci; 2022 Mar; 23(7):. PubMed ID: 35409254
    [TBL] [Abstract][Full Text] [Related]  

  • 17. PHBV/PLLA-based composite scaffolds fabricated using an emulsion freezing/freeze-drying technique for bone tissue engineering: surface modification and in vitro biological evaluation.
    Sultana N; Wang M
    Biofabrication; 2012 Mar; 4(1):015003. PubMed ID: 22258057
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recent advances of polymer-based piezoelectric composites for biomedical applications.
    Mokhtari F; Azimi B; Salehi M; Hashemikia S; Danti S
    J Mech Behav Biomed Mater; 2021 Oct; 122():104669. PubMed ID: 34280866
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis and properties of porous piezoelectric BT/PHBV composite scaffold.
    Jiao H; Song S; Zhao K; Zhang X; Tang Y
    J Biomater Sci Polym Ed; 2020 Aug; 31(12):1552-1565. PubMed ID: 32403996
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vitro characterization of hepatocyte growth factor release from PHBV/PLGA microsphere scaffold.
    Zhu XH; Wang CH; Tong YW
    J Biomed Mater Res A; 2009 May; 89(2):411-23. PubMed ID: 18431776
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.