BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 38364494)

  • 1. Exploring the role of NIR spectroscopy in quantifying and verifying honey authenticity: A review.
    Biswas A; Chaudhari SR
    Food Chem; 2024 Jul; 445():138712. PubMed ID: 38364494
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Establishing authenticity of honey via comprehensive Romanian honey analysis.
    Geana EI; Ciucure CT
    Food Chem; 2020 Feb; 306():125595. PubMed ID: 31610324
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Geographical discrimination of Paw San rice cultivated in different regions of Myanmar using near-infrared spectroscopy, headspace-gas chromatography-ion mobility spectrometry and chemometrics.
    Thantar S; Mihailova A; Islam MD; Maxwell F; Hamed I; Vlachou C; Kelly SD
    Talanta; 2024 Jun; 273():125910. PubMed ID: 38492284
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Developments and Challenges in Online NIR Spectroscopy for Meat Processing.
    Dixit Y; Casado-Gavalda MP; Cama-Moncunill R; Cama-Moncunill X; Markiewicz-Keszycka M; Cullen PJ; Sullivan C
    Compr Rev Food Sci Food Saf; 2017 Nov; 16(6):1172-1187. PubMed ID: 33371583
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comprehensive review of the current trends and recent advancements on the authenticity of honey.
    Zhang XH; Gu HW; Liu RJ; Qing XD; Nie JF
    Food Chem X; 2023 Oct; 19():100850. PubMed ID: 37780275
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rapid quantification of honey adulteration by visible-near infrared spectroscopy combined with chemometrics.
    Ferreiro-González M; Espada-Bellido E; Guillén-Cueto L; Palma M; Barroso CG; Barbero GF
    Talanta; 2018 Oct; 188():288-292. PubMed ID: 30029378
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mid-Infrared Spectroscopy as a Valuable Tool to Tackle Food Analysis: A Literature Review on Coffee, Dairies, Honey, Olive Oil and Wine.
    Mendes E; Duarte N
    Foods; 2021 Feb; 10(2):. PubMed ID: 33671755
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Origin Identification of Hungarian Honey Using Melissopalynology, Physicochemical Analysis, and Near Infrared Spectroscopy.
    Bodor Z; Kovacs Z; Benedek C; Hitka G; Behling H
    Molecules; 2021 Nov; 26(23):. PubMed ID: 34885865
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact of Different Adulterants on Honey Quality Properties and Evaluating Different Analytical Approaches for Adulteration Detection.
    Damto T; Zewdu A; Birhanu T
    J Food Prot; 2024 Apr; 87(4):100241. PubMed ID: 38360408
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analyzing the Quality Parameters of Apples by Spectroscopy from Vis/NIR to NIR Region: A Comprehensive Review.
    Grabska J; Beć KB; Ueno N; Huck CW
    Foods; 2023 May; 12(10):. PubMed ID: 37238763
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Comprehensive Review on the Main Honey Authentication Issues: Production and Origin.
    Soares S; Amaral JS; Oliveira MBPP; Mafra I
    Compr Rev Food Sci Food Saf; 2017 Sep; 16(5):1072-1100. PubMed ID: 33371614
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Honey authenticity: analytical techniques, state of the art and challenges.
    Tsagkaris AS; Koulis GA; Danezis GP; Martakos I; Dasenaki M; Georgiou CA; Thomaidis NS
    RSC Adv; 2021 Mar; 11(19):11273-11294. PubMed ID: 35423655
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of Stingless Bee Honey Adulteration Using Visible-Near Infrared Spectroscopy Combined with Aquaphotomics.
    Raypah ME; Omar AF; Muncan J; Zulkurnain M; Abdul Najib AR
    Molecules; 2022 Apr; 27(7):. PubMed ID: 35408723
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Progress in quality analysis of honey by infrared spectroscopy].
    Tu ZH; Zhu DZ; Ji BP; Meng CY; Wang LG; Qing ZS
    Guang Pu Xue Yu Guang Pu Fen Xi; 2010 Nov; 30(11):2971-5. PubMed ID: 21284165
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Determination of adulteration in honey using near-infrared spectroscopy].
    Chen LZ; Zhao J; Ye ZH; Zhong YP
    Guang Pu Xue Yu Guang Pu Fen Xi; 2008 Nov; 28(11):2565-8. PubMed ID: 19271491
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An overview of recent advances and applications of FT-IR spectroscopy for quality, authenticity, and adulteration detection in edible oils.
    Mousa MAA; Wang Y; Antora SA; Al-Qurashi AD; Ibrahim OHM; He HJ; Liu S; Kamruzzaman M
    Crit Rev Food Sci Nutr; 2022; 62(29):8009-8027. PubMed ID: 33977844
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enabling honey quality and authenticity with NMR and LC-IRMS based platform.
    Biswas A; Naresh KS; Jaygadkar SS; Chaudhari SR
    Food Chem; 2023 Aug; 416():135825. PubMed ID: 36924528
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of ANOVA-simultaneous component analysis to quantify and characterise effects of age, temperature, syrup adulteration and irradiation on near-infrared (NIR) spectral data of honey.
    Rust A; Marini F; Allsopp M; Williams PJ; Manley M
    Spectrochim Acta A Mol Biomol Spectrosc; 2021 May; 253():119546. PubMed ID: 33677373
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A screening method based on Visible-NIR spectroscopy for the identification and quantification of different adulterants in high-quality honey.
    Aliaño-González MJ; Ferreiro-González M; Espada-Bellido E; Palma M; Barbero GF
    Talanta; 2019 Oct; 203():235-241. PubMed ID: 31202332
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modern analytical techniques in the assessment of the authenticity of Serbian honey.
    Milojković Opsenica D; Lušić D; Tešić Ž
    Arh Hig Rada Toksikol; 2015 Dec; 66(4):233-41. PubMed ID: 26751854
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.