These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
159 related articles for article (PubMed ID: 38364801)
1. Multiobjective tree-based reinforcement learning for estimating tolerant dynamic treatment regimes. Song Y; Wang L Biometrics; 2024 Jan; 80(1):. PubMed ID: 38364801 [TBL] [Abstract][Full Text] [Related]
2. TREE-BASED REINFORCEMENT LEARNING FOR ESTIMATING OPTIMAL DYNAMIC TREATMENT REGIMES. Tao Y; Wang L; Almirall D Ann Appl Stat; 2018 Sep; 12(3):1914-1938. PubMed ID: 30984321 [TBL] [Abstract][Full Text] [Related]
3. Adaptive contrast weighted learning for multi-stage multi-treatment decision-making. Tao Y; Wang L Biometrics; 2017 Mar; 73(1):145-155. PubMed ID: 27213913 [TBL] [Abstract][Full Text] [Related]
4. Restricted sub-tree learning to estimate an optimal dynamic treatment regime using observational data. Speth K; Wang L Stat Med; 2021 Nov; 40(26):5796-5812. PubMed ID: 34340264 [TBL] [Abstract][Full Text] [Related]
5. Step-adjusted tree-based reinforcement learning for evaluating nested dynamic treatment regimes using test-and-treat observational data. Tang M; Wang L; Gorin MA; Taylor JMG Stat Med; 2021 Nov; 40(27):6164-6177. PubMed ID: 34490942 [TBL] [Abstract][Full Text] [Related]
6. Optimal dynamic treatment regime estimation using information extraction from unstructured clinical text. Zhou N; Brook RD; Dinov ID; Wang L Biom J; 2022 Apr; 64(4):805-817. PubMed ID: 35112726 [TBL] [Abstract][Full Text] [Related]
7. C-learning: A new classification framework to estimate optimal dynamic treatment regimes. Zhang B; Zhang M Biometrics; 2018 Sep; 74(3):891-899. PubMed ID: 29228509 [TBL] [Abstract][Full Text] [Related]
8. Penalized Spline-Involved Tree-based (PenSIT) Learning for estimating an optimal dynamic treatment regime using observational data. Speth KA; Elliott MR; Marquez JL; Wang L Stat Methods Med Res; 2022 Dec; 31(12):2338-2351. PubMed ID: 36189475 [TBL] [Abstract][Full Text] [Related]
9. Estimating tree-based dynamic treatment regimes using observational data with restricted treatment sequences. Zhou N; Wang L; Almirall D Biometrics; 2023 Sep; 79(3):2260-2271. PubMed ID: 36063542 [TBL] [Abstract][Full Text] [Related]
10. Dynamic regime marginal structural mean models for estimation of optimal dynamic treatment regimes, Part I: main content. Orellana L; Rotnitzky A; Robins JM Int J Biostat; 2010; 6(2):Article 8. PubMed ID: 21969994 [TBL] [Abstract][Full Text] [Related]
11. Imputation-based Q-learning for optimizing dynamic treatment regimes with right-censored survival outcome. Lyu L; Cheng Y; Wahed AS Biometrics; 2023 Dec; 79(4):3676-3689. PubMed ID: 37129942 [TBL] [Abstract][Full Text] [Related]
12. New Statistical Learning Methods for Estimating Optimal Dynamic Treatment Regimes. Zhao YQ; Zeng D; Laber EB; Kosorok MR J Am Stat Assoc; 2015; 110(510):583-598. PubMed ID: 26236062 [TBL] [Abstract][Full Text] [Related]
13. Reinforcement learning in clinical medicine: a method to optimize dynamic treatment regime over time. Zhang Z; Ann Transl Med; 2019 Jul; 7(14):345. PubMed ID: 31475215 [TBL] [Abstract][Full Text] [Related]
14. Accountable survival contrast-learning for optimal dynamic treatment regimes. Choi T; Lee H; Choi S Sci Rep; 2023 Feb; 13(1):2250. PubMed ID: 36755137 [TBL] [Abstract][Full Text] [Related]
15. Estimating Dynamic Treatment Regimes in Mobile Health Using V-learning. Luckett DJ; Laber EB; Kahkoska AR; Maahs DM; Mayer-Davis E; Kosorok MR J Am Stat Assoc; 2020; 115(530):692-706. PubMed ID: 32952236 [TBL] [Abstract][Full Text] [Related]
16. Bayesian inference for optimal dynamic treatment regimes in practice. Rodriguez Duque D; Moodie EEM; Stephens DA Int J Biostat; 2023 Nov; 19(2):309-331. PubMed ID: 37192544 [TBL] [Abstract][Full Text] [Related]