BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 38364874)

  • 1. Rapid characterization of physical properties for the pharmaceutical pellet cores based on NIR spectroscopy and ensemble learning.
    Wu S; Jia C; Wang L; Ye C; Li Z; Li W
    Eur J Pharm Biopharm; 2024 Apr; 197():114214. PubMed ID: 38364874
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An improved ensemble partial least squares for analysis of near-infrared spectra.
    Hu Y; Peng S; Peng J; Wei J
    Talanta; 2012 May; 94():301-7. PubMed ID: 22608452
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synchronously Predicting Tea Polyphenol and Epigallocatechin Gallate in Tea Leaves Using Fourier Transform-Near-Infrared Spectroscopy and Machine Learning.
    Ye S; Weng H; Xiang L; Jia L; Xu J
    Molecules; 2023 Jul; 28(14):. PubMed ID: 37513250
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A online NIR sensor for the pilot-scale extraction process in Fructus aurantii coupled with single and ensemble methods.
    Pan X; Li Y; Wu Z; Zhang Q; Zheng Z; Shi X; Qiao Y
    Sensors (Basel); 2015 Apr; 15(4):8749-63. PubMed ID: 25875194
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In line NIR quantification of film thickness on pharmaceutical pellets during a fluid bed coating process.
    Lee MJ; Seo DY; Lee HE; Wang IC; Kim WS; Jeong MY; Choi GJ
    Int J Pharm; 2011 Jan; 403(1-2):66-72. PubMed ID: 21035529
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling of soluble solid content of PE-packaged blueberries based on near-infrared spectroscopy with back propagation neural network and partial least squares (BP-PLS) algorithm.
    Chen Y; Li Y; Williams RA; Zhang Z; Peng R; Liu X; Xing T
    J Food Sci; 2023 Nov; 88(11):4602-4619. PubMed ID: 37755701
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Building the quality into pellet manufacturing environment--feasibility study and validation of an in-line quantitative near infrared (NIR) method.
    Mantanus J; Ziémons E; Rozet E; Streel B; Klinkenberg R; Evrard B; Rantanen J; Hubert P
    Talanta; 2010 Dec; 83(2):305-11. PubMed ID: 21111138
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Using an optimal CC-PLSR-RBFNN model and NIR spectroscopy for the starch content determination in corn.
    Jiang H; Lu J
    Spectrochim Acta A Mol Biomol Spectrosc; 2018 May; 196():131-140. PubMed ID: 29444495
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction of tea theanine content using near-infrared spectroscopy and flower pollination algorithm.
    Ong P; Chen S; Tsai CY; Chuang YK
    Spectrochim Acta A Mol Biomol Spectrosc; 2021 Jul; 255():119657. PubMed ID: 33744842
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of Ensemble Strategies in Online NIR for Monitoring the Extraction Process of Pericarpium Citri Reticulatae Based on Different Variable Selections.
    Zhou Z; Li Y; Zhang Q; Shi X; Wu Z; Qiao Y
    Planta Med; 2016 Jan; 82(1-2):154-62. PubMed ID: 26485639
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rapid quantification of active pharmaceutical ingredient for sugar-free Yangwei granules in commercial production using FT-NIR spectroscopy based on machine learning techniques.
    Zhao J; Tian G; Qiu Y; Qu H
    Spectrochim Acta A Mol Biomol Spectrosc; 2021 Jan; 245():118878. PubMed ID: 32919149
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of partial least square, artificial neural network, and support vector regressions for real-time monitoring of CHO cell culture processes using in situ near-infrared spectroscopy.
    Zavala-Ortiz DA; Denner A; Aguilar-Uscanga MG; Marc A; Ebel B; Guedon E
    Biotechnol Bioeng; 2022 Feb; 119(2):535-549. PubMed ID: 34821379
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chemometric evaluation of pharmaceutical properties of antipyrine granules by near-infrared spectroscopy.
    Otsuka M; Mouri Y; Matsuda Y
    AAPS PharmSciTech; 2003; 4(3):E47. PubMed ID: 14621979
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of the coat quality of sustained release pellets by individual pellet dissolution methodology.
    Xu M; Liew CV; Heng PWS
    Int J Pharm; 2015 Jan; 478(1):318-327. PubMed ID: 25435182
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rapid Detection of Volatile Oil in
    Yan H; Guo C; Shao Y; Ouyang Z
    Pharmacogn Mag; 2017; 13(51):439-445. PubMed ID: 28839369
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Real-time release testing of dissolution based on surrogate models developed by machine learning algorithms using NIR spectra, compression force and particle size distribution as input data.
    Galata DL; Könyves Z; Nagy B; Novák M; Mészáros LA; Szabó E; Farkas A; Marosi G; Nagy ZK
    Int J Pharm; 2021 Mar; 597():120338. PubMed ID: 33545285
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapid Measurement of Cellulose, Hemicellulose, and Lignin Content in
    Ai N; Jiang Y; Omar S; Wang J; Xia L; Ren J
    Molecules; 2022 Jan; 27(2):. PubMed ID: 35056650
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Classification of structurally related commercial contrast media by near infrared spectroscopy.
    Yip WL; Soosainather TC; Dyrstad K; Sande SA
    J Pharm Biomed Anal; 2014 Mar; 90():148-60. PubMed ID: 24374816
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Near-infrared spectroscopy and machine learning-based technique to predict quality-related parameters in instant tea.
    Bai X; Zhang L; Kang C; Quan B; Zheng Y; Zhang X; Song J; Xia T; Wang M
    Sci Rep; 2022 Mar; 12(1):3833. PubMed ID: 35264637
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Determination of acidity in oranges based on emphatic orthogonal signal correction and principal component orthogonal signal correction].
    Yang F; Qiu XZ; Hao R; Gao F; Du W; Zhang ZY
    Guang Pu Xue Yu Guang Pu Fen Xi; 2012 Jul; 32(7):1931-4. PubMed ID: 23016356
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.