These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 38364947)

  • 1. Immune Response following FLASH and Conventional Radiation in Diffuse Midline Glioma.
    Padilla O; Minns HE; Wei HJ; Fan W; Webster-Carrion A; Tazhibi M; McQuillan NM; Zhang X; Gallitto M; Yeh R; Zhang Z; Hei TK; Szalontay L; Pavisic J; Tan Y; Deoli N; Garty G; Garvin JH; Canoll PD; Vanpouille-Box C; Menon V; Olah M; Rabadan R; Wu CC; Gartrell RD
    Int J Radiat Oncol Biol Phys; 2024 Jul; 119(4):1248-1260. PubMed ID: 38364947
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of intratumor and local immune response between MV X-ray FLASH and conventional radiotherapies.
    Zhu H; Xie D; Wang Y; Huang R; Chen X; Yang Y; Wang B; Peng Y; Wang J; Xiao D; Wu D; Qian CN; Deng X
    Clin Transl Radiat Oncol; 2023 Jan; 38():138-146. PubMed ID: 36425537
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Antitumor Effect by Either FLASH or Conventional Dose Rate Irradiation Involves Equivalent Immune Responses.
    Almeida A; Godfroid C; Leavitt RJ; Montay-Gruel P; Petit B; Romero J; Ollivier J; Meziani L; Sprengers K; Paisley R; Grilj V; Limoli CL; Romero P; Vozenin MC
    Int J Radiat Oncol Biol Phys; 2024 Mar; 118(4):1110-1122. PubMed ID: 37951550
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparable Long-Term Tumor Control for Hypofractionated FLASH Versus Conventional Radiation Therapy in an Immunocompetent Rat Glioma Model.
    Konradsson E; Liljedahl E; Gustafsson E; Adrian G; Beyer S; Ilaahi SE; Petersson K; Ceberg C; Nittby Redebrandt H
    Adv Radiat Oncol; 2022; 7(6):101011. PubMed ID: 36092986
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Current perspectives on diffuse midline glioma and a different role for the immune microenvironment compared to glioblastoma.
    Pachocki CJ; Hol EM
    J Neuroinflammation; 2022 Nov; 19(1):276. PubMed ID: 36403059
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proton FLASH Radiation Therapy and Immune Infiltration: Evaluation in an Orthotopic Glioma Rat Model.
    Iturri L; Bertho A; Lamirault C; Juchaux M; Gilbert C; Espenon J; Sebrie C; Jourdain L; Pouzoulet F; Verrelle P; De Marzi L; Prezado Y
    Int J Radiat Oncol Biol Phys; 2023 Jul; 116(3):655-665. PubMed ID: 36563907
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of Tumor Control and Skin Damage in a Mouse Model after Ultra-High Dose Rate Irradiation and Conventional Irradiation.
    Duval KEA; Aulwes E; Zhang R; Rahman M; Ashraf MR; Sloop A; Sunnerberg J; Williams BB; Cao X; Bruza P; Kheirollah A; Tavakkoli A; Jarvis LA; Schaner PE; Swartz HM; Gladstone DJ; Pogue BW; Hoopes PJ
    Radiat Res; 2023 Sep; 200(3):223-231. PubMed ID: 37590482
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of Ultra-high doserate FLASH Irradiation on the Tumor Microenvironment in Lewis Lung Carcinoma: Role of Myosin Light Chain.
    Kim YE; Gwak SH; Hong BJ; Oh JM; Choi HS; Kim MS; Oh D; Lartey FM; Rafat M; Schüler E; Kim HS; von Eyben R; Weissman IL; Koch CJ; Maxim PG; Loo BW; Ahn GO
    Int J Radiat Oncol Biol Phys; 2021 Apr; 109(5):1440-1453. PubMed ID: 33186615
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Randomized phase II selection trial of FLASH and conventional radiotherapy for patients with localized cutaneous squamous cell carcinoma or basal cell carcinoma: A study protocol.
    Kinj R; Gaide O; Jeanneret-Sozzi W; Dafni U; Viguet-Carrin S; Sagittario E; Kypriotou M; Chenal J; Duclos F; Hebeisen M; Falco T; Geyer R; Gonçalves Jorge P; Moeckli R; Bourhis J
    Clin Transl Radiat Oncol; 2024 Mar; 45():100743. PubMed ID: 38362466
    [TBL] [Abstract][Full Text] [Related]  

  • 10. FLASH-RT does not affect chromosome translocations and junction structures beyond that of CONV-RT dose-rates.
    Barghouth PG; Melemenidis S; Montay-Gruel P; Ollivier J; Viswanathan V; Jorge PG; Soto LA; Lau BC; Sadeghi C; Edlabadkar A; Zhang R; Ru N; Baulch JE; Manjappa R; Wang J; Le Bouteiller M; Surucu M; Yu A; Bush K; Skinner L; Maxim PG; Loo BW; Limoli CL; Vozenin MC; Frock RL
    Radiother Oncol; 2023 Nov; 188():109906. PubMed ID: 37690668
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Maintenance of Tight Junction Integrity in the Absence of Vascular Dilation in the Brain of Mice Exposed to Ultra-High-Dose-Rate FLASH Irradiation.
    Allen BD; Acharya MM; Montay-Gruel P; Jorge PG; Bailat C; Petit B; Vozenin MC; Limoli C
    Radiat Res; 2020 Dec; 194(6):625-635. PubMed ID: 33348373
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparable survival in rats with intracranial glioblastoma irradiated with single-fraction conventional radiotherapy or FLASH radiotherapy.
    Liljedahl E; Konradsson E; Linderfalk K; Gustafsson E; Petersson K; Ceberg C; Redebrandt HN
    Front Oncol; 2023; 13():1309174. PubMed ID: 38322292
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Focused ultrasound-mediated blood-brain barrier opening is safe and feasible with moderately hypofractionated radiotherapy for brainstem diffuse midline glioma.
    Tazhibi M; McQuillan N; Wei HJ; Gallitto M; Bendau E; Webster Carrion A; Berg X; Kokossis D; Zhang X; Zhang Z; Jan CI; Mintz A; Gartrell RD; Syed HR; Fonseca A; Pavisic J; Szalontay L; Konofagou EE; Zacharoulis S; Wu CC
    J Transl Med; 2024 Mar; 22(1):320. PubMed ID: 38555449
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pencil beam scanning proton FLASH maintains tumor control while normal tissue damage is reduced in a mouse model.
    Sørensen BS; Sitarz MK; Ankjærgaard C; Johansen JG; Andersen CE; Kanouta E; Grau C; Poulsen P
    Radiother Oncol; 2022 Oct; 175():178-184. PubMed ID: 35595175
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preclinical Ultra-High Dose Rate (FLASH) Proton Radiation Therapy System for Small Animal Studies.
    Cao N; Erickson DPJ; Ford EC; Emery RC; Kranz M; Goff P; Schwarz M; Meyer J; Wong T; Saini J; Bloch C; Stewart RD; Sandison GA; Morimoto A; DeLonais-Dick A; Shaver BA; Rengan R; Zeng J
    Adv Radiat Oncol; 2024 Mar; 9(3):101425. PubMed ID: 38379895
    [TBL] [Abstract][Full Text] [Related]  

  • 16. FLASH Effects Induced by Orthovoltage X-Rays.
    Miles D; Sforza D; Wong JW; Gabrielson K; Aziz K; Mahesh M; Coulter JB; Siddiqui I; Tran PT; Viswanathan AN; Rezaee M
    Int J Radiat Oncol Biol Phys; 2023 Nov; 117(4):1018-1027. PubMed ID: 37364800
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultra-High-Dose-Rate FLASH Irradiation Limits Reactive Gliosis in the Brain.
    Montay-Gruel P; Markarian M; Allen BD; Baddour JD; Giedzinski E; Jorge PG; Petit B; Bailat C; Vozenin MC; Limoli C; Acharya MM
    Radiat Res; 2020 Dec; 194(6):636-645. PubMed ID: 32853387
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Elucidating the neurological mechanism of the FLASH effect in juvenile mice exposed to hypofractionated radiotherapy.
    Allen BD; Alaghband Y; Kramár EA; Ru N; Petit B; Grilj V; Petronek MS; Pulliam CF; Kim RY; Doan NL; Baulch JE; Wood MA; Bailat C; Spitz DR; Vozenin MC; Limoli CL
    Neuro Oncol; 2023 May; 25(5):927-939. PubMed ID: 36334265
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultra-high-dose-rate FLASH and Conventional-Dose-Rate Irradiation Differentially Affect Human Acute Lymphoblastic Leukemia and Normal Hematopoiesis.
    Chabi S; To THV; Leavitt R; Poglio S; Jorge PG; Jaccard M; Petersson K; Petit B; Roméo PH; Pflumio F; Vozenin MC; Uzan B
    Int J Radiat Oncol Biol Phys; 2021 Mar; 109(3):819-829. PubMed ID: 33075474
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CD38 deficiency in the tumor microenvironment attenuates glioma progression and modulates features of tumor-associated microglia/macrophages.
    Levy A; Blacher E; Vaknine H; Lund FE; Stein R; Mayo L
    Neuro Oncol; 2012 Aug; 14(8):1037-49. PubMed ID: 22700727
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.