These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 38365157)

  • 1. Geometric deep learning for the prediction of magnesium-binding sites in RNA structures.
    Wang K; Yin Z; Sang C; Xia W; Wang Y; Sun T; Xu X
    Int J Biol Macromol; 2024 Mar; 262(Pt 2):130150. PubMed ID: 38365157
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of metal ion-binding sites in RNA structures using deep learning method.
    Zhao Y; Wang J; Chang F; Gong W; Liu Y; Li C
    Brief Bioinform; 2023 Mar; 24(2):. PubMed ID: 36772993
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MetalionRNA: computational predictor of metal-binding sites in RNA structures.
    Philips A; Milanowska K; Lach G; Boniecki M; Rother K; Bujnicki JM
    Bioinformatics; 2012 Jan; 28(2):198-205. PubMed ID: 22110243
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exploration of metal ion binding sites in RNA folds by Brownian-dynamics simulations.
    Hermann T; Westhof E
    Structure; 1998 Oct; 6(10):1303-14. PubMed ID: 9782053
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Many-body effect in ion binding to RNA.
    Zhu Y; Chen SJ
    J Chem Phys; 2014 Aug; 141(5):055101. PubMed ID: 25106614
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deciphering interaction fingerprints from protein molecular surfaces using geometric deep learning.
    Gainza P; Sverrisson F; Monti F; Rodolà E; Boscaini D; Bronstein MM; Correia BE
    Nat Methods; 2020 Feb; 17(2):184-192. PubMed ID: 31819266
    [TBL] [Abstract][Full Text] [Related]  

  • 7. RLBind: a deep learning method to predict RNA-ligand binding sites.
    Wang K; Zhou R; Wu Y; Li M
    Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36398911
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational Assessment of Potassium and Magnesium Ion Binding to a Buried Pocket in GTPase-Associating Center RNA.
    Hayatshahi HS; Roe DR; Galindo-Murillo R; Hall KB; Cheatham TE
    J Phys Chem B; 2017 Jan; 121(3):451-462. PubMed ID: 27983843
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Importance of diffuse metal ion binding to RNA.
    Tan ZJ; Chen SJ
    Met Ions Life Sci; 2011; 9():101-24. PubMed ID: 22010269
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of Na+ and Mg2+ ions on RNA structures studied with molecular dynamics simulations.
    Fischer NM; Polêto MD; Steuer J; van der Spoel D
    Nucleic Acids Res; 2018 Jun; 46(10):4872-4882. PubMed ID: 29718375
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Graph deep learning locates magnesium ions in RNA.
    Zhou Y; Chen SJ
    QRB Discov; 2022; 3():. PubMed ID: 37292390
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 13. RNA-protein binding motifs mining with a new hybrid deep learning based cross-domain knowledge integration approach.
    Pan X; Shen HB
    BMC Bioinformatics; 2017 Feb; 18(1):136. PubMed ID: 28245811
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicting RNA-Metal Ion Binding with Ion Dehydration Effects.
    Sun LZ; Chen SJ
    Biophys J; 2019 Jan; 116(2):184-195. PubMed ID: 30612712
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microenvironment analysis and identification of magnesium binding sites in RNA.
    Banatao DR; Altman RB; Klein TE
    Nucleic Acids Res; 2003 Aug; 31(15):4450-60. PubMed ID: 12888505
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Consequences of Mg
    Halder A; Roy R; Bhattacharyya D; Mitra A
    Phys Chem Chem Phys; 2018 Aug; 20(34):21934-21948. PubMed ID: 30088497
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent methodology progress of deep learning for RNA-protein interaction prediction.
    Pan X; Yang Y; Xia CQ; Mirza AH; Shen HB
    Wiley Interdiscip Rev RNA; 2019 Nov; 10(6):e1544. PubMed ID: 31067608
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metal3D: a general deep learning framework for accurate metal ion location prediction in proteins.
    Dürr SL; Levy A; Rothlisberger U
    Nat Commun; 2023 May; 14(1):2713. PubMed ID: 37169763
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A thermodynamic framework for the magnesium-dependent folding of RNA.
    Misra VK; Shiman R; Draper DE
    Biopolymers; 2003 May; 69(1):118-36. PubMed ID: 12717727
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exploring the electrostatic energy landscape for tetraloop-receptor docking.
    He Z; Zhu Y; Chen SJ
    Phys Chem Chem Phys; 2014 Apr; 16(14):6367-75. PubMed ID: 24322001
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.