These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 38365333)

  • 21. Evaluation of a passive pediatric leg exoskeleton during gait.
    Zistatsis J; Peters KM; Ballesteros D; Feldner HA; Bjornson K; Steele KM
    Prosthet Orthot Int; 2021 Apr; 45(2):153-160. PubMed ID: 33094685
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Learning to walk with an adaptive gain proportional myoelectric controller for a robotic ankle exoskeleton.
    Koller JR; Jacobs DA; Ferris DP; Remy CD
    J Neuroeng Rehabil; 2015 Nov; 12():97. PubMed ID: 26536868
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Integration of Inertial Sensors in a Lower Limb Robotic Exoskeleton.
    Calle-Siguencia J; Callejas-Cuervo M; García-Reino S
    Sensors (Basel); 2022 Jun; 22(12):. PubMed ID: 35746340
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Sliding Mode-Based Active Disturbance Rejection Control of Assistive Exoskeleton Device for Rehabilitation of Disabled Lower Limbs.
    Alawad NA; Humaidi AJ; Alaraji AS
    An Acad Bras Cienc; 2023; 95(2):e20220680. PubMed ID: 37341275
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Preliminary assessment of a lower-limb exoskeleton controller for guiding leg movement in overground walking.
    Martinez A; Lawson B; Goldfarb M
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():375-380. PubMed ID: 28813848
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Review of control strategies for lower-limb exoskeletons to assist gait.
    Baud R; Manzoori AR; Ijspeert A; Bouri M
    J Neuroeng Rehabil; 2021 Jul; 18(1):119. PubMed ID: 34315499
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Simulation on the Effect of Gait Variability, Delays, and Inertia with Respect to Wearer Energy Savings with Exoskeleton Assistance.
    Fang S; Kinney AL; Reissman ME; Reissman T
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():506-511. PubMed ID: 31374680
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Benchmarking the Effects on Human-Exoskeleton Interaction of Trajectory, Admittance and EMG-Triggered Exoskeleton Movement Control.
    Rodrigues-Carvalho C; Fernández-García M; Pinto-Fernández D; Sanz-Morere C; Barroso FO; Borromeo S; Rodríguez-Sánchez C; Moreno JC; Del-Ama AJ
    Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679587
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Design of a biologically inspired lower limb exoskeleton for human gait rehabilitation.
    Lyu M; Chen W; Ding X; Wang J; Bai S; Ren H
    Rev Sci Instrum; 2016 Oct; 87(10):104301. PubMed ID: 27802730
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Custom sizing of lower limb exoskeleton actuators using gait dynamic modelling of children with cerebral palsy.
    Samadi B; Achiche S; Parent A; Ballaz L; Chouinard U; Raison M
    Comput Methods Biomech Biomed Engin; 2016 Nov; 19(14):1519-24. PubMed ID: 26980164
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A unilateral robotic knee exoskeleton to assess the role of natural gait assistance in hemiparetic patients.
    Lora-Millan JS; Sanchez-Cuesta FJ; Romero JP; Moreno JC; Rocon E
    J Neuroeng Rehabil; 2022 Oct; 19(1):109. PubMed ID: 36209096
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Improved Active Disturbance Rejection Control for Trajectory Tracking Control of Lower Limb Robotic Rehabilitation Exoskeleton.
    Aole S; Elamvazuthi I; Waghmare L; Patre B; Meriaudeau F
    Sensors (Basel); 2020 Jun; 20(13):. PubMed ID: 32630115
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Gait Prediction and Variable Admittance Control for Lower Limb Exoskeleton With Measurement Delay and Extended-State-Observer.
    Chen Z; Guo Q; Li T; Yan Y; Jiang D
    IEEE Trans Neural Netw Learn Syst; 2023 Nov; 34(11):8693-8706. PubMed ID: 35302939
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Anti-Disturbance Sliding Mode Control of a Novel Variable Stiffness Actuator for the Rehabilitation of Neurologically Disabled Patients.
    Mo L; Feng P; Shao Y; Shi D; Ju L; Zhang W; Ding X
    Front Robot AI; 2022; 9():864684. PubMed ID: 35585837
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Study on the influence of wearable lower limb exoskeleton on gait characteristics].
    Zhang J; Cai Y; Liu Q
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2019 Oct; 36(5):785-794. PubMed ID: 31631627
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Proportional Joint-Moment Control for Instantaneously Adaptive Ankle Exoskeleton Assistance.
    Gasparri GM; Luque J; Lerner ZF
    IEEE Trans Neural Syst Rehabil Eng; 2019 Apr; 27(4):751-759. PubMed ID: 30908231
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Biomechanical and Physiological Evaluation of a Multi-Joint Exoskeleton with Active-Passive Assistance for Walking.
    Cao W; Zhang Z; Chen C; He Y; Wang D; Wu X
    Biosensors (Basel); 2021 Oct; 11(10):. PubMed ID: 34677349
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Development of a Prototype Overground Pelvic Obliquity Support Robot for Rehabilitation of Hemiplegia Gait.
    Hwang S; Lee S; Shin D; Baek I; Ham S; Kim W
    Sensors (Basel); 2022 Mar; 22(7):. PubMed ID: 35408083
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Bio-inspired control of joint torque and knee stiffness in a robotic lower limb exoskeleton using a central pattern generator.
    Schrade SO; Nager Y; Wu AR; Gassert R; Ijspeert A
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1387-1394. PubMed ID: 28814014
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Adaptive Non-Singular Terminal Sliding Mode Control Method for Electromagnetic Linear Actuator.
    Lu Y; Lu J; Tan C; Tian M; Dong G
    Micromachines (Basel); 2022 Aug; 13(8):. PubMed ID: 36014216
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.