These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 38365344)

  • 21. Multi-task deep learning for glaucoma detection from color fundus images.
    Pascal L; Perdomo OJ; Bost X; Huet B; Otálora S; Zuluaga MA
    Sci Rep; 2022 Jul; 12(1):12361. PubMed ID: 35858986
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A deep learning model for the detection of both advanced and early glaucoma using fundus photography.
    Ahn JM; Kim S; Ahn KS; Cho SH; Lee KB; Kim US
    PLoS One; 2018; 13(11):e0207982. PubMed ID: 30481205
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Iterative variational mode decomposition based automated detection of glaucoma using fundus images.
    Maheshwari S; Pachori RB; Kanhangad V; Bhandary SV; Acharya UR
    Comput Biol Med; 2017 Sep; 88():142-149. PubMed ID: 28728059
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Image processing based automatic diagnosis of glaucoma using wavelet features of segmented optic disc from fundus image.
    Singh A; Dutta MK; ParthaSarathi M; Uher V; Burget R
    Comput Methods Programs Biomed; 2016 Feb; 124():108-20. PubMed ID: 26574297
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Segmentation technique and dynamic ensemble selection to enhance glaucoma severity detection.
    Zulfira FZ; Suyanto S; Septiarini A
    Comput Biol Med; 2021 Dec; 139():104951. PubMed ID: 34678479
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Classification of Glaucoma Stages Using Image Empirical Mode Decomposition from Fundus Images.
    Parashar D; Agrawal DK
    J Digit Imaging; 2022 Oct; 35(5):1283-1292. PubMed ID: 35581407
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A novel algorithm to detect glaucoma risk using texton and local configuration pattern features extracted from fundus images.
    Acharya UR; Bhat S; Koh JEW; Bhandary SV; Adeli H
    Comput Biol Med; 2017 Sep; 88():72-83. PubMed ID: 28700902
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Automated Glaucoma Screening from Retinal Fundus Image Using Deep Learning.
    Phasuk S; Tantibundhit C; Poopresert P; Yaemsuk A; Suvannachart P; Itthipanichpong R; Chansangpetch S; Manassakorn A; Tantisevi V; Rojanapongpun P
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():904-907. PubMed ID: 31946040
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Diagnosis of Glaucoma on Retinal Fundus Images Using Deep Learning: Detection of Nerve Fiber Layer Defect and Optic Disc Analysis.
    Muramatsu C
    Adv Exp Med Biol; 2020; 1213():121-132. PubMed ID: 32030667
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Automated retinal health diagnosis using pyramid histogram of visual words and Fisher vector techniques.
    Koh JEW; Ng EYK; Bhandary SV; Hagiwara Y; Laude A; Acharya UR
    Comput Biol Med; 2018 Jan; 92():204-209. PubMed ID: 29227822
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Detection of Glaucoma from Fundus Images Using Novel Evolutionary-Based Deep Neural Network.
    Madhumalini M; Devi TM
    J Digit Imaging; 2022 Aug; 35(4):1008-1022. PubMed ID: 35274218
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Automated vertical cup-to-disc ratio determination from fundus images for glaucoma detection.
    Gao XR; Wu F; Yuhas PT; Rasel RK; Chiariglione M
    Sci Rep; 2024 Feb; 14(1):4494. PubMed ID: 38396048
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Accurate, fast, data efficient and interpretable glaucoma diagnosis with automated spatial analysis of the whole cup to disc profile.
    MacCormick IJC; Williams BM; Zheng Y; Li K; Al-Bander B; Czanner S; Cheeseman R; Willoughby CE; Brown EN; Spaeth GL; Czanner G
    PLoS One; 2019; 14(1):e0209409. PubMed ID: 30629635
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Application of a deep learning system in glaucoma screening and further classification with colour fundus photographs: a case control study.
    Hung KH; Kao YC; Tang YH; Chen YT; Wang CH; Wang YC; Lee OK
    BMC Ophthalmol; 2022 Dec; 22(1):483. PubMed ID: 36510171
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Deep learning-based automated detection of glaucomatous optic neuropathy on color fundus photographs.
    Li F; Yan L; Wang Y; Shi J; Chen H; Zhang X; Jiang M; Wu Z; Zhou K
    Graefes Arch Clin Exp Ophthalmol; 2020 Apr; 258(4):851-867. PubMed ID: 31989285
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Utilizing human intelligence in artificial intelligence for detecting glaucomatous fundus images using human-in-the-loop machine learning.
    Ramesh PV; Subramaniam T; Ray P; Devadas AK; Ramesh SV; Ansar SM; Ramesh MK; Rajasekaran R; Parthasarathi S
    Indian J Ophthalmol; 2022 Apr; 70(4):1131-1138. PubMed ID: 35325999
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Automated glaucoma diagnosis using bit-plane slicing and local binary pattern techniques.
    Maheshwari S; Kanhangad V; Pachori RB; Bhandary SV; Acharya UR
    Comput Biol Med; 2019 Feb; 105():72-80. PubMed ID: 30590290
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Incorporating feature selection methods into a machine learning-based neonatal seizure diagnosis.
    Açıkoğlu M; Tuncer SA
    Med Hypotheses; 2020 Feb; 135():109464. PubMed ID: 31731060
    [TBL] [Abstract][Full Text] [Related]  

  • 39. CNNs for automatic glaucoma assessment using fundus images: an extensive validation.
    Diaz-Pinto A; Morales S; Naranjo V; Köhler T; Mossi JM; Navea A
    Biomed Eng Online; 2019 Mar; 18(1):29. PubMed ID: 30894178
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A novel image recuperation approach for diagnosing and ranking retinopathy disease level using diabetic fundus image.
    Krishnamoorthy S; Alli P
    PLoS One; 2015; 10(5):e0125542. PubMed ID: 25974230
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.