These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
160 related articles for article (PubMed ID: 38365500)
1. Cancer Therapies and Cardiomyocyte Viability: Which Drugs are Directly Cardiotoxic? Balachandran L; Haw TJ; Leong AJW; Croft AJ; Chen D; Kelly C; Sverdlov AL; Ngo DTM Heart Lung Circ; 2024 May; 33(5):747-752. PubMed ID: 38365500 [TBL] [Abstract][Full Text] [Related]
2. Continued exposure of anti-cancer drugs to human iPS cell-derived cardiomyocytes can unmask their cardiotoxic effects. Sakamoto K; Sakatoku K; Sugimoto S; Iwasaki N; Sano Y; Yamaguchi M; Kurokawa J J Pharmacol Sci; 2019 Aug; 140(4):345-349. PubMed ID: 31521491 [TBL] [Abstract][Full Text] [Related]
3. Ponatinib-induced cardiotoxicity: delineating the signalling mechanisms and potential rescue strategies. Singh AP; Glennon MS; Umbarkar P; Gupte M; Galindo CL; Zhang Q; Force T; Becker JR; Lal H Cardiovasc Res; 2019 Apr; 115(5):966-977. PubMed ID: 30629146 [TBL] [Abstract][Full Text] [Related]
4. Computational model of cardiomyocyte apoptosis identifies mechanisms of tyrosine kinase inhibitor-induced cardiotoxicity. Grabowska ME; Chun B; Moya R; Saucerman JJ J Mol Cell Cardiol; 2021 Jun; 155():66-77. PubMed ID: 33667419 [TBL] [Abstract][Full Text] [Related]
5. Cardiotoxicity screening of illicit drugs and new psychoactive substances (NPS) in human iPSC-derived cardiomyocytes using microelectrode array (MEA) recordings. Zwartsen A; de Korte T; Nacken P; de Lange DW; Westerink RHS; Hondebrink L J Mol Cell Cardiol; 2019 Nov; 136():102-112. PubMed ID: 31526813 [TBL] [Abstract][Full Text] [Related]
6. Metabolic Aspects of Anthracycline Cardiotoxicity. Russo M; Della Sala A; Tocchetti CG; Porporato PE; Ghigo A Curr Treat Options Oncol; 2021 Feb; 22(2):18. PubMed ID: 33547494 [TBL] [Abstract][Full Text] [Related]
7. Cell death mechanisms of the anti-cancer drug etoposide on human cardiomyocytes isolated from pluripotent stem cells. Nemade H; Chaudhari U; Acharya A; Hescheler J; Hengstler JG; Papadopoulos S; Sachinidis A Arch Toxicol; 2018 Apr; 92(4):1507-1524. PubMed ID: 29397400 [TBL] [Abstract][Full Text] [Related]
8. Chronic drug-induced effects on contractile motion properties and cardiac biomarkers in human induced pluripotent stem cell-derived cardiomyocytes. Kopljar I; De Bondt A; Vinken P; Teisman A; Damiano B; Goeminne N; Van den Wyngaert I; Gallacher DJ; Lu HR Br J Pharmacol; 2017 Nov; 174(21):3766-3779. PubMed ID: 28094846 [TBL] [Abstract][Full Text] [Related]
9. Multi-parameter in vitro toxicity testing of crizotinib, sunitinib, erlotinib, and nilotinib in human cardiomyocytes. Doherty KR; Wappel RL; Talbert DR; Trusk PB; Moran DM; Kramer JW; Brown AM; Shell SA; Bacus S Toxicol Appl Pharmacol; 2013 Oct; 272(1):245-55. PubMed ID: 23707608 [TBL] [Abstract][Full Text] [Related]
10. Selective protection of human cardiomyocytes from anthracycline cardiotoxicity by small molecule inhibitors of MAP4K4. Golforoush PA; Narasimhan P; Chaves-Guerrero PP; Lawrence E; Newton G; Yan R; Harding SE; Perrior T; Chapman KL; Schneider MD Sci Rep; 2020 Jul; 10(1):12060. PubMed ID: 32694738 [TBL] [Abstract][Full Text] [Related]
11. Cardiotoxicity of the BCR-ABL1 tyrosine kinase inhibitors: Emphasis on ponatinib. Singh AP; Umbarkar P; Tousif S; Lal H Int J Cardiol; 2020 Oct; 316():214-221. PubMed ID: 32470534 [TBL] [Abstract][Full Text] [Related]
12. Chemotherapy-induced cardiotoxicity in children. Bansal N; Amdani S; Lipshultz ER; Lipshultz SE Expert Opin Drug Metab Toxicol; 2017 Aug; 13(8):817-832. PubMed ID: 28679288 [TBL] [Abstract][Full Text] [Related]
13. Functional and Transcriptional Characterization of Histone Deacetylase Inhibitor-Mediated Cardiac Adverse Effects in Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes. Kopljar I; Gallacher DJ; De Bondt A; Cougnaud L; Vlaminckx E; Van den Wyngaert I; Lu HR Stem Cells Transl Med; 2016 May; 5(5):602-12. PubMed ID: 27034410 [TBL] [Abstract][Full Text] [Related]
14. Role of serum biomarkers in cancer patients receiving cardiotoxic cancer therapies: a position statement from the Cardio-Oncology Study Group of the Heart Failure Association and the Cardio-Oncology Council of the European Society of Cardiology. Pudil R; Mueller C; Čelutkienė J; Henriksen PA; Lenihan D; Dent S; Barac A; Stanway S; Moslehi J; Suter TM; Ky B; Štěrba M; Cardinale D; Cohen-Solal A; Tocchetti CG; Farmakis D; Bergler-Klein J; Anker MS; Von Haehling S; Belenkov Y; Iakobishvili Z; Maack C; Ciardiello F; Ruschitzka F; Coats AJS; Seferovic P; Lainscak M; Piepoli MF; Chioncel O; Bax J; Hulot JS; Skouri H; Hägler-Laube ES; Asteggiano R; Fernandez TL; de Boer RA; Lyon AR Eur J Heart Fail; 2020 Nov; 22(11):1966-1983. PubMed ID: 33006257 [TBL] [Abstract][Full Text] [Related]
18. Three tyrosine kinase inhibitors cause cardiotoxicity by inducing endoplasmic reticulum stress and inflammation in cardiomyocytes. Wang H; Wang Y; Li J; He Z; Boswell SA; Chung M; You F; Han S BMC Med; 2023 Apr; 21(1):147. PubMed ID: 37069550 [TBL] [Abstract][Full Text] [Related]
19. Cardiotoxicity of cancer chemotherapy: implications for children. Simbre VC; Duffy SA; Dadlani GH; Miller TL; Lipshultz SE Paediatr Drugs; 2005; 7(3):187-202. PubMed ID: 15977964 [TBL] [Abstract][Full Text] [Related]
20. Toxicology of Trastuzumab: An Insight into Mechanisms of Cardiotoxicity. An J; Sheikh MS Curr Cancer Drug Targets; 2019; 19(5):400-407. PubMed ID: 29189161 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]