BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 38365536)

  • 1. Metabolic engineering with adaptive laboratory evolution for phenylalanine production by Corynebacterium glutamicum.
    Tachikawa Y; Okuno M; Itoh T; Hirasawa T
    J Biosci Bioeng; 2024 May; 137(5):344-353. PubMed ID: 38365536
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integration of E. coli aroG-pheA tandem genes into Corynebacterium glutamicum tyrA locus and its effect on L-phenylalanine biosynthesis.
    Liu DX; Fan CS; Tao JH; Liang GX; Gao SE; Wang HJ; Li X; Song DX
    World J Gastroenterol; 2004 Dec; 10(24):3683-7. PubMed ID: 15534933
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stepwise metabolic engineering of Corynebacterium glutamicum for the production of phenylalanine.
    Kataoka N; Matsutani M; Matsushita K; Yakushi T
    J Gen Appl Microbiol; 2023 Jun; 69(1):11-23. PubMed ID: 35989300
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Corynebacterium glutamicum contains 3-deoxy-D-arabino-heptulosonate 7-phosphate synthases that display novel biochemical features.
    Liu YJ; Li PP; Zhao KX; Wang BJ; Jiang CY; Drake HL; Liu SJ
    Appl Environ Microbiol; 2008 Sep; 74(17):5497-503. PubMed ID: 18621870
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced production of L-phenylalanine in Corynebacterium glutamicum due to the introduction of Escherichia coli wild-type gene aroH.
    Zhang C; Zhang J; Kang Z; Du G; Yu X; Wang T; Chen J
    J Ind Microbiol Biotechnol; 2013 Jun; 40(6):643-51. PubMed ID: 23526182
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Construction and application of novel feedback-resistant 3-deoxy-d-arabino-heptulosonate-7-phosphate synthases by engineering the N-terminal domain for L-phenylalanine synthesis.
    Zhang C; Kang Z; Zhang J; Du G; Chen J; Yu X
    FEMS Microbiol Lett; 2014 Apr; 353(1):11-8. PubMed ID: 24517515
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolic Engineering of Shikimic Acid-Producing
    Sato N; Kishida M; Nakano M; Hirata Y; Tanaka T
    Front Bioeng Biotechnol; 2020; 8():569406. PubMed ID: 33015020
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolic Engineering To Produce Tyrosine or Phenylalanine in a Tryptophan-Producing Corynebacterium glutamicum Strain.
    Ikeda M; Katsumata R
    Appl Environ Microbiol; 1992 Mar; 58(3):781-5. PubMed ID: 16348670
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Production of l-Phenylalanine from Starch by Analog-Resistant Mutants of Bacillus polymyxa.
    Shetty K; Crawford DL; Pometto AL
    Appl Environ Microbiol; 1986 Oct; 52(4):637-43. PubMed ID: 16347159
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Production of 4-Hydroxybenzoic Acid by an Aerobic Growth-Arrested Bioprocess Using Metabolically Engineered Corynebacterium glutamicum.
    Kitade Y; Hashimoto R; Suda M; Hiraga K; Inui M
    Appl Environ Microbiol; 2018 Mar; 84(6):. PubMed ID: 29305513
    [No Abstract]   [Full Text] [Related]  

  • 11. Phenylalanine production by metabolically engineered Corynebacterium glutamicum with the pheA gene of Escherichia coli.
    Ikeda M; Ozaki A; Katsumata R
    Appl Microbiol Biotechnol; 1993 Jun; 39(3):318-23. PubMed ID: 7763713
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cloning of m-fluorophenylalanine-resistant gene and mutational analysis of feedback-resistant prephenate dehydratase from Corynebacterium glutamicum.
    Chan MS; Hsu WH
    Biochem Biophys Res Commun; 1996 Feb; 219(2):537-42. PubMed ID: 8605023
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rational engineering of the shikimate and related pathways in Corynebacterium glutamicum for 4-hydroxybenzoate production.
    Syukur Purwanto H; Kang MS; Ferrer L; Han SS; Lee JY; Kim HS; Lee JH
    J Biotechnol; 2018 Sep; 282():92-100. PubMed ID: 30031819
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protein engineering for feedback resistance in 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase.
    Jayaraman K; Trachtmann N; Sprenger GA; Gohlke H
    Appl Microbiol Biotechnol; 2022 Oct; 106(19-20):6505-6517. PubMed ID: 36109385
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adaptive laboratory evolution accelerated glutarate production by Corynebacterium glutamicum.
    Prell C; Busche T; Rückert C; Nolte L; Brandenbusch C; Wendisch VF
    Microb Cell Fact; 2021 May; 20(1):97. PubMed ID: 33971881
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Corynebacterium glutamicum as platform for the production of hydroxybenzoic acids.
    Kallscheuer N; Marienhagen J
    Microb Cell Fact; 2018 May; 17(1):70. PubMed ID: 29753327
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Corynebacterium glutamicum cell factory design for the efficient production of cis, cis-muconic acid.
    Li M; Chen J; He K; Su C; Wu Y; Tan T
    Metab Eng; 2024 Mar; 82():225-237. PubMed ID: 38369050
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rational engineering of multiple module pathways for the production of L-phenylalanine in Corynebacterium glutamicum.
    Zhang C; Zhang J; Kang Z; Du G; Chen J
    J Ind Microbiol Biotechnol; 2015 May; 42(5):787-97. PubMed ID: 25665502
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolic engineering of Corynebacterium glutamicum for l-tyrosine production from glucose and xylose.
    Kurpejović E; Burgardt A; Bastem GM; Junker N; Wendisch VF; Sariyar Akbulut B
    J Biotechnol; 2023 Feb; 363():8-16. PubMed ID: 36566842
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genetic and biochemical identification of the chorismate mutase from Corynebacterium glutamicum.
    Li PP; Liu YJ; Liu SJ
    Microbiology (Reading); 2009 Oct; 155(Pt 10):3382-3391. PubMed ID: 19589834
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.