These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 38366069)

  • 1. Polypyrrole-wool composite with electrical heating properties fabricated via layer-by-layer method.
    Lee S
    Sci Rep; 2024 Feb; 14(1):3883. PubMed ID: 38366069
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electric heated cotton fabrics with durable conductivity and self-cleaning properties.
    Lee S; Park CH
    RSC Adv; 2018 Aug; 8(54):31008-31018. PubMed ID: 35548731
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flexible Wearable Electronic Fabrics with Dual Functions of Efficient EMI Shielding and Electric Heating for Triboelectric Nanogenerators.
    Wang X; Li TY; Geng WH; Bao Z; Qian PF; Jing LC; Bin PS; Yang ZX; Liu XL; Geng HZ
    ACS Appl Mater Interfaces; 2023 May; 15(18):22762-22776. PubMed ID: 37105683
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Changes in characteristics of silver conductive fabrics owing to perspiration and washing.
    Park S; Kim H; Lee S
    RSC Adv; 2023 Sep; 13(41):28444-28461. PubMed ID: 37771924
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigation of Electrical and Wearing Properties of Wool Fabric Coated with PEDOT:PSS.
    Pupeikė J; Sankauskaitė A; Varnaitė-Žuravliova S; Rubežienė V; Abraitienė A
    Polymers (Basel); 2023 May; 15(11):. PubMed ID: 37299337
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Advancement in conductive cotton fabrics through in situ polymerization of polypyrrole-nanocellulose composites.
    Hebeish A; Farag S; Sharaf S; Shaheen TI
    Carbohydr Polym; 2016 Oct; 151():96-102. PubMed ID: 27474547
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Encapsulation of Electrically Conductive Apparel Fabrics: Effects on Performance.
    Wilson S; Laing R; Tan EW; Wilson C
    Sensors (Basel); 2020 Jul; 20(15):. PubMed ID: 32751479
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermal insulation property of graphene/polymer coated textile based multi-layer fabric heating element with aramid fabric.
    Kim H; Kim HS; Lee S
    Sci Rep; 2020 Oct; 10(1):17586. PubMed ID: 33067483
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrothermal Modeling and Analysis of Polypyrrole-Coated Wearable E-Textiles.
    Kaynak A; Zolfagharian A; Featherby T; Bodaghi M; Mahmud MAP; Kouzani AZ
    Materials (Basel); 2021 Jan; 14(3):. PubMed ID: 33498828
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Flexible Wet-Spun PEDOT:PSS Microfibers Integrating Thermal-Sensing and Joule Heating Functions for Smart Textiles.
    Li Y; Hu H; Salim T; Cheng G; Lam YM; Ding J
    Polymers (Basel); 2023 Aug; 15(16):. PubMed ID: 37631489
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Study of the Wear Resistance of Conductive Poly Lactic Acid Monofilament 3D Printed onto Polyethylene Terephthalate Woven Materials.
    Eutionnat-Diffo PA; Chen Y; Guan J; Cayla A; Campagne C; Nierstrasz V
    Materials (Basel); 2020 May; 13(10):. PubMed ID: 32438670
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabrication and characterization of conductive polypyrrole/chitosan/collagen electrospun nanofiber scaffold for tissue engineering application.
    Zarei M; Samimi A; Khorram M; Abdi MM; Golestaneh SI
    Int J Biol Macromol; 2021 Jan; 168():175-186. PubMed ID: 33309657
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessment of Impact of the Surface Modification Techniques on Structural, Biophysical, and Electrically Conductive Properties of Different Fabrics.
    Skrzetuska E; Puszkarz AK; Nosal J
    Materials (Basel); 2024 Mar; 17(5):. PubMed ID: 38473640
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reduced Graphene Oxide-Coated Fabrics for Joule-Heating and Antibacterial Applications.
    Jafari B; Botte GG
    ACS Appl Nano Mater; 2023 Nov; 6(21):20006-20017. PubMed ID: 37969783
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Layer-by-layer self-assembly immobilization of catalases on wool fabrics.
    Liu J; Wang Q; Fan XR; Sun XJ; Huang PH
    Appl Biochem Biotechnol; 2013 Apr; 169(7):2212-22. PubMed ID: 23420488
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Flexible MXene-Decorated Fabric with Interwoven Conductive Networks for Integrated Joule Heating, Electromagnetic Interference Shielding, and Strain Sensing Performances.
    Zhang X; Wang X; Lei Z; Wang L; Tian M; Zhu S; Xiao H; Tang X; Qu L
    ACS Appl Mater Interfaces; 2020 Mar; 12(12):14459-14467. PubMed ID: 32150382
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deposition of ZIF-67 and polypyrrole on current collector knitted from carbon nanotube-wrapped polymer yarns as a high-performance electrode for flexible supercapacitors.
    Liang Y; Luo X; Hu Z; Yang L; Zhang Y; Zhu L; Zhu M
    J Colloid Interface Sci; 2023 Feb; 631(Pt A):77-85. PubMed ID: 36368216
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of surface modification on the dynamic heat and mass transfer of wool fabrics.
    Li W; Zhao Y; Wang X
    J Therm Biol; 2019 Oct; 85():102416. PubMed ID: 31657757
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabrication of Conductive, High Strength and Electromagnetic Interference (EMI) Shielded Green Composites Based on Waste Materials.
    Ali A; Hussain F; Tahir MF; Ali M; Zaman Khan M; Tomková B; Militky J; Noman MT; Azeem M
    Polymers (Basel); 2022 Mar; 14(7):. PubMed ID: 35406163
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Processing of Composite Electrodes of Carbon Nanotube Fabrics and Inorganic Matrices via Rapid Joule Heating.
    Upama S; Mikhalchan A; Arévalo L; Rana M; Pendashteh A; Green MJ; Vilatela JJ
    ACS Appl Mater Interfaces; 2023 Feb; 15(4):5590-5599. PubMed ID: 36648936
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.