These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
156 related articles for article (PubMed ID: 38366111)
21. The Skn7 response regulator of Saccharomyces cerevisiae interacts with Hsf1 in vivo and is required for the induction of heat shock genes by oxidative stress. Raitt DC; Johnson AL; Erkine AM; Makino K; Morgan B; Gross DS; Johnston LH Mol Biol Cell; 2000 Jul; 11(7):2335-47. PubMed ID: 10888672 [TBL] [Abstract][Full Text] [Related]
22. Cell adaptation to aneuploidy by the environmental stress response dampens induction of the cytosolic unfolded-protein response. Kane AJ; Brennan CM; Xu AE; Solís EJ; Terhorst A; Denic V; Amon A Mol Biol Cell; 2021 Aug; 32(17):1557-1564. PubMed ID: 34191542 [TBL] [Abstract][Full Text] [Related]
23. The Heat Shock Response as a Condensate Cascade. Dea A; Pincus D J Mol Biol; 2024 Jul; 436(14):168642. PubMed ID: 38848866 [TBL] [Abstract][Full Text] [Related]
24. Hsf1 activation inhibits rapamycin resistance and TOR signaling in yeast revealed by combined proteomic and genetic analysis. Bandhakavi S; Xie H; O'Callaghan B; Sakurai H; Kim DH; Griffin TJ PLoS One; 2008 Feb; 3(2):e1598. PubMed ID: 18270585 [TBL] [Abstract][Full Text] [Related]
25. Different requirements of the SWI/SNF complex for robust nucleosome displacement at promoters of heat shock factor and Msn2- and Msn4-regulated heat shock genes. Erkina TY; Tschetter PA; Erkine AM Mol Cell Biol; 2008 Feb; 28(4):1207-17. PubMed ID: 18070923 [TBL] [Abstract][Full Text] [Related]
27. Reprogramming of the Ethanol Stress Response in Saccharomyces cerevisiae by the Transcription Factor Znf1 and Its Effect on the Biosynthesis of Glycerol and Ethanol. Samakkarn W; Ratanakhanokchai K; Soontorngun N Appl Environ Microbiol; 2021 Jul; 87(16):e0058821. PubMed ID: 34105981 [TBL] [Abstract][Full Text] [Related]
28. Size doesn't matter in the heat shock response. Pincus D Curr Genet; 2017 May; 63(2):175-178. PubMed ID: 27502399 [TBL] [Abstract][Full Text] [Related]
29. Interaction between heat shock transcription factors (HSFs) and divergent binding sequences: binding specificities of yeast HSFs and human HSF1. Sakurai H; Takemori Y J Biol Chem; 2007 May; 282(18):13334-41. PubMed ID: 17347150 [TBL] [Abstract][Full Text] [Related]
30. Monitoring of the Heat Shock Response with a Real-Time Luciferase Reporter. Ackerman A; Kijima T; Eguchi T; Prince TL Methods Mol Biol; 2023; 2693():1-11. PubMed ID: 37540422 [TBL] [Abstract][Full Text] [Related]
31. Rim15-dependent activation of Hsf1 and Msn2/4 transcription factors by direct phosphorylation in Saccharomyces cerevisiae. Lee P; Kim MS; Paik SM; Choi SH; Cho BR; Hahn JS FEBS Lett; 2013 Nov; 587(22):3648-55. PubMed ID: 24140345 [TBL] [Abstract][Full Text] [Related]
32. mTOR is essential for the proteotoxic stress response, HSF1 activation and heat shock protein synthesis. Chou SD; Prince T; Gong J; Calderwood SK PLoS One; 2012; 7(6):e39679. PubMed ID: 22768106 [TBL] [Abstract][Full Text] [Related]
33. An HSF1-JMJD6-HSP feedback circuit promotes cell adaptation to proteotoxic stress. Alasady MJ; Koeva M; Takagishi SR; Segal D; Amici DR; Smith RS; Ansel DJ; Lindquist S; Whitesell L; Bartom ET; Taipale M; Mendillo ML Proc Natl Acad Sci U S A; 2024 Jul; 121(29):e2313370121. PubMed ID: 38985769 [TBL] [Abstract][Full Text] [Related]
34. Dynamic coalescence of yeast Heat Shock Protein genes bypasses the requirement for actin. Rubio LS; Gross DS Genetics; 2023 Apr; 223(4):. PubMed ID: 36659814 [TBL] [Abstract][Full Text] [Related]
35. Reversible phase separation of HSF1 is required for an acute transcriptional response during heat shock. Zhang H; Shao S; Zeng Y; Wang X; Qin Y; Ren Q; Xiang S; Wang Y; Xiao J; Sun Y Nat Cell Biol; 2022 Mar; 24(3):340-352. PubMed ID: 35256776 [TBL] [Abstract][Full Text] [Related]
36. A novel domain of the yeast heat shock factor that regulates its activation function. Sakurai H; Fukasawa T Biochem Biophys Res Commun; 2001 Jul; 285(3):696-701. PubMed ID: 11453649 [TBL] [Abstract][Full Text] [Related]
37. Hsf1 on a leash - controlling the heat shock response by chaperone titration. Masser AE; Ciccarelli M; Andréasson C Exp Cell Res; 2020 Nov; 396(1):112246. PubMed ID: 32861670 [TBL] [Abstract][Full Text] [Related]
38. Modulation of human heat shock factor trimerization by the linker domain. Liu PC; Thiele DJ J Biol Chem; 1999 Jun; 274(24):17219-25. PubMed ID: 10358080 [TBL] [Abstract][Full Text] [Related]
39. Different mechanisms are involved in the transcriptional activation by yeast heat shock transcription factor through two different types of heat shock elements. Hashikawa N; Yamamoto N; Sakurai H J Biol Chem; 2007 Apr; 282(14):10333-40. PubMed ID: 17289668 [TBL] [Abstract][Full Text] [Related]
40. Fine-tuning of the Msn2/4-mediated yeast stress responses as revealed by systematic deletion of Msn2/4 partners. Sadeh A; Movshovich N; Volokh M; Gheber L; Aharoni A Mol Biol Cell; 2011 Sep; 22(17):3127-38. PubMed ID: 21757539 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]