BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 38366192)

  • 1. Escherichia coli CRISPR arrays from early life fecal samples preferentially target prophages.
    Dion MB; Shah SA; Deng L; Thorsen J; Stokholm J; Krogfelt KA; Schjørring S; Horvath P; Allard A; Nielsen DS; Petit MA; Moineau S
    ISME J; 2024 Jan; 18(1):. PubMed ID: 38366192
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Abundant and diverse clustered regularly interspaced short palindromic repeat spacers in Clostridium difficile strains and prophages target multiple phage types within this pathogen.
    Hargreaves KR; Flores CO; Lawley TD; Clokie MR
    mBio; 2014 Aug; 5(5):e01045-13. PubMed ID: 25161187
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cooperation between Different CRISPR-Cas Types Enables Adaptation in an RNA-Targeting System.
    Hoikkala V; Ravantti J; Díez-Villaseñor C; Tiirola M; Conrad RA; McBride MJ; Moineau S; Sundberg LR
    mBio; 2021 Mar; 12(2):. PubMed ID: 33785624
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The CRISPR Spacer Space Is Dominated by Sequences from Species-Specific Mobilomes.
    Shmakov SA; Sitnik V; Makarova KS; Wolf YI; Severinov KV; Koonin EV
    mBio; 2017 Sep; 8(5):. PubMed ID: 28928211
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prophages are associated with extensive CRISPR-Cas auto-immunity.
    Nobrega FL; Walinga H; Dutilh BE; Brouns SJJ
    Nucleic Acids Res; 2020 Dec; 48(21):12074-12084. PubMed ID: 33219687
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CRISPR-Cas phage defense systems and prophages in Candidatus Accumulibacter.
    Deng X; Yuan J; Chen L; Chen H; Wei C; Nielsen PH; Wuertz S; Qiu G
    Water Res; 2023 May; 235():119906. PubMed ID: 37004306
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The driving force of prophages and CRISPR-Cas system in the evolution of Cronobacter sakazakii.
    Zeng H; Zhang J; Li C; Xie T; Ling N; Wu Q; Ye Y
    Sci Rep; 2017 Jan; 7():40206. PubMed ID: 28057934
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Survey of clustered regularly interspaced short palindromic repeats and their associated Cas proteins (CRISPR/Cas) systems in multiple sequenced strains of Klebsiella pneumoniae.
    Ostria-Hernández ML; Sánchez-Vallejo CJ; Ibarra JA; Castro-Escarpulli G
    BMC Res Notes; 2015 Aug; 8():332. PubMed ID: 26238567
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CRISPR-Cas systems in Proteus mirabilis.
    Fallah MS; Mohebbi A; Yasaghi M; Ghaemi EA
    Infect Genet Evol; 2021 Aug; 92():104881. PubMed ID: 33905883
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Induction and Elimination of Prophages Using CRISPR Interference.
    Cornuault JK; Moineau S
    CRISPR J; 2021 Aug; 4(4):549-557. PubMed ID: 34406037
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Covalent Modifications of the Bacteriophage Genome Confer a Degree of Resistance to Bacterial CRISPR Systems.
    Liu Y; Dai L; Dong J; Chen C; Zhu J; Rao VB; Tao P
    J Virol; 2020 Nov; 94(23):. PubMed ID: 32938767
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Natural diversity of CRISPR spacers of Thermus: evidence of local spacer acquisition and global spacer exchange.
    Lopatina A; Medvedeva S; Artamonova D; Kolesnik M; Sitnik V; Ispolatov Y; Severinov K
    Philos Trans R Soc Lond B Biol Sci; 2019 May; 374(1772):20180092. PubMed ID: 30905291
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Occurrence and Diversity of CRISPR-Cas Systems in the Genus Bifidobacterium.
    Briner AE; Lugli GA; Milani C; Duranti S; Turroni F; Gueimonde M; Margolles A; van Sinderen D; Ventura M; Barrangou R
    PLoS One; 2015; 10(7):e0133661. PubMed ID: 26230606
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predominance of Single Prophage Carrying a CRISPR/cas System in "Candidatus Liberibacter asiaticus" Strains in Southern China.
    Zheng Z; Bao M; Wu F; Chen J; Deng X
    PLoS One; 2016; 11(1):e0146422. PubMed ID: 26741827
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigating the Relationship between CRISPR-Cas Content and Growth Rate in Bacteria.
    Liu ZL; Hu EZ; Niu DK
    Microbiol Spectr; 2023 Jun; 11(3):e0340922. PubMed ID: 37022199
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of CRISPR Spacer and Protospacer Sequences in
    Stamereilers C; Wong S; Tsourkas PK
    Viruses; 2021 Mar; 13(3):. PubMed ID: 33799666
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Avoidance of Trinucleotide Corresponding to Consensus Protospacer Adjacent Motif Controls the Efficiency of Prespacer Selection during Primed Adaptation.
    Musharova O; Vyhovskyi D; Medvedeva S; Guzina J; Zhitnyuk Y; Djordjevic M; Severinov K; Savitskaya E
    mBio; 2018 Dec; 9(6):. PubMed ID: 30514784
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CRISPR Content Correlates with the Pathogenic Potential of Escherichia coli.
    García-Gutiérrez E; Almendros C; Mojica FJ; Guzmán NM; García-Martínez J
    PLoS One; 2015; 10(7):e0131935. PubMed ID: 26136211
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impact of Different Target Sequences on Type III CRISPR-Cas Immunity.
    Maniv I; Jiang W; Bikard D; Marraffini LA
    J Bacteriol; 2016 Jan; 198(6):941-50. PubMed ID: 26755632
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CRISPR Spacers Indicate Preferential Matching of Specific Virioplankton Genes.
    Nasko DJ; Ferrell BD; Moore RM; Bhavsar JD; Polson SW; Wommack KE
    mBio; 2019 Mar; 10(2):. PubMed ID: 30837341
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.