These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 38366426)

  • 1. Stationary particle currents in sedimenting active matter wetting a wall.
    Mangeat M; Chakraborty S; Wysocki A; Rieger H
    Phys Rev E; 2024 Jan; 109(1-1):014616. PubMed ID: 38366426
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Capillary Action in Scalar Active Matter.
    Wysocki A; Rieger H
    Phys Rev Lett; 2020 Jan; 124(4):048001. PubMed ID: 32058737
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Active colloidal suspensions exhibit polar order under gravity.
    Enculescu M; Stark H
    Phys Rev Lett; 2011 Jul; 107(5):058301. PubMed ID: 21867100
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sedimentation and polar order of active bottom-heavy particles.
    Wolff K; Hahn AM; Stark H
    Eur Phys J E Soft Matter; 2013 Apr; 36(4):9858. PubMed ID: 23612748
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intrinsic structure perspective for MIPS interfaces in two-dimensional systems of active Brownian particles.
    Chacón E; Alarcón F; Ramírez J; Tarazona P; Valeriani C
    Soft Matter; 2022 Mar; 18(13):2646-2653. PubMed ID: 35302119
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Virial pressure in systems of spherical active Brownian particles.
    Winkler RG; Wysocki A; Gompper G
    Soft Matter; 2015 Sep; 11(33):6680-91. PubMed ID: 26221908
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Active Brownian equation of state: metastability and phase coexistence.
    Levis D; Codina J; Pagonabarraga I
    Soft Matter; 2017 Nov; 13(44):8113-8119. PubMed ID: 29105717
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The coherent motions of thermal active Brownian particles.
    Yang C; Zeng Y; Xu S; Zhou X
    Phys Chem Chem Phys; 2023 May; 25(18):13027-13032. PubMed ID: 37114336
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Floor- or Ceiling-Sliding for Chemically Active, Gyrotactic, Sedimenting Janus Particles.
    Das S; Jalilvand Z; Popescu MN; Uspal WE; Dietrich S; Kretzschmar I
    Langmuir; 2020 Jun; 36(25):7133-7147. PubMed ID: 31986887
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamical clustering interrupts motility-induced phase separation in chiral active Brownian particles.
    Ma Z; Ni R
    J Chem Phys; 2022 Jan; 156(2):021102. PubMed ID: 35032980
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Morphological transitions of active Brownian particle aggregates on porous walls.
    Das S; Chelakkot R
    Soft Matter; 2020 Aug; 16(31):7250-7255. PubMed ID: 32744272
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Machine learning for phase behavior in active matter systems.
    Dulaney AR; Brady JF
    Soft Matter; 2021 Jul; 17(28):6808-6816. PubMed ID: 34223598
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamic shapes of floppy vesicles enclosing active Brownian particles with membrane adhesion.
    Iyer P; Gompper G; Fedosov DA
    Soft Matter; 2023 May; 19(19):3436-3449. PubMed ID: 37132446
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Motility-Induced Microphase and Macrophase Separation in a Two-Dimensional Active Brownian Particle System.
    Caporusso CB; Digregorio P; Levis D; Cugliandolo LF; Gonnella G
    Phys Rev Lett; 2020 Oct; 125(17):178004. PubMed ID: 33156654
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamics of sedimenting active Brownian particles.
    Vachier J; Mazza MG
    Eur Phys J E Soft Matter; 2019 Jan; 42(1):11. PubMed ID: 30687883
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Active Brownian particles and run-and-tumble particles separate inside a maze.
    Khatami M; Wolff K; Pohl O; Ejtehadi MR; Stark H
    Sci Rep; 2016 Nov; 6():37670. PubMed ID: 27876867
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Particle migration induced by confinement of colloidal suspensions along the gravitational direction.
    Liétor-Santos JJ; Fernández-Nieves A; Márquez M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Nov; 74(5 Pt 1):051404. PubMed ID: 17279906
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aggregate morphology of active Brownian particles on porous, circular walls.
    Das S; Ghosh S; Chelakkot R
    Phys Rev E; 2020 Sep; 102(3-1):032619. PubMed ID: 33075888
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.