These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
125 related articles for article (PubMed ID: 38366433)
1. Universal quantum Otto heat machine based on the Dicke model. Xu HG; Jin J; Neto GDM; de Almeida NG Phys Rev E; 2024 Jan; 109(1-1):014122. PubMed ID: 38366433 [TBL] [Abstract][Full Text] [Related]
2. Comparative study of quantum Otto and Carnot engines powered by a spin working substance. Abd-Rabbou MY; Rahman AU; Yurischev MA; Haddadi S Phys Rev E; 2023 Sep; 108(3-1):034106. PubMed ID: 37849157 [TBL] [Abstract][Full Text] [Related]
3. Performance of Quantum Heat Engines Enhanced by Adiabatic Deformation of Trapping Potential. Xiao Y; Li K; He J; Wang J Entropy (Basel); 2023 Mar; 25(3):. PubMed ID: 36981372 [TBL] [Abstract][Full Text] [Related]
4. Anisotropy-assisted thermodynamic advantage of a local-spin quantum thermal machine. Purkait C; Chand S; Biswas A Phys Rev E; 2024 Apr; 109(4-1):044128. PubMed ID: 38755864 [TBL] [Abstract][Full Text] [Related]
5. Quantum Criticality in the Biased Dicke Model. Zhu H; Zhang G; Fan H Sci Rep; 2016 Jan; 6():19751. PubMed ID: 26786239 [TBL] [Abstract][Full Text] [Related]
6. Impurity reveals distinct operational phases in quantum thermodynamic cycles. Prakash A; Kumar A; Benjamin C Phys Rev E; 2022 Nov; 106(5-1):054112. PubMed ID: 36559514 [TBL] [Abstract][Full Text] [Related]
7. Quantum Phase Transitions in a Generalized Dicke Model. Liu W; Duan L Entropy (Basel); 2023 Oct; 25(11):. PubMed ID: 37998185 [TBL] [Abstract][Full Text] [Related]
8. Performance bounds of nonadiabatic quantum harmonic Otto engine and refrigerator under a squeezed thermal reservoir. Singh V; Müstecaplıoğlu ÖE Phys Rev E; 2020 Dec; 102(6-1):062123. PubMed ID: 33466082 [TBL] [Abstract][Full Text] [Related]
9. Universal two-level quantum Otto machine under a squeezed reservoir. de Assis RJ; Sales JS; da Cunha JAR; de Almeida NG Phys Rev E; 2020 Nov; 102(5-1):052131. PubMed ID: 33327155 [TBL] [Abstract][Full Text] [Related]
10. Thermal entanglement in two-atom cavity QED and the entangled quantum Otto engine. Wang H; Liu S; He J Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Apr; 79(4 Pt 1):041113. PubMed ID: 19518179 [TBL] [Abstract][Full Text] [Related]
11. Quantum Heat Engines with Complex Working Media, Complete Otto Cycles and Heuristics. Johal RS; Mehta V Entropy (Basel); 2021 Sep; 23(9):. PubMed ID: 34573774 [TBL] [Abstract][Full Text] [Related]
12. Quantum Otto-type heat engine with fixed frequency. Matos RQ; de Assis RJ; de Almeida NG Phys Rev E; 2023 Nov; 108(5-1):054131. PubMed ID: 38115429 [TBL] [Abstract][Full Text] [Related]
15. Bosons outperform fermions: The thermodynamic advantage of symmetry. Myers NM; Deffner S Phys Rev E; 2020 Jan; 101(1-1):012110. PubMed ID: 32069543 [TBL] [Abstract][Full Text] [Related]
16. Quantum Chaos in the Extended Dicke Model. Wang Q Entropy (Basel); 2022 Oct; 24(10):. PubMed ID: 37420435 [TBL] [Abstract][Full Text] [Related]
17. Two coupled double quantum-dot systems as a working substance for heat machines. de Oliveira JLD; Rojas M; Filgueiras C Phys Rev E; 2021 Jul; 104(1-1):014149. PubMed ID: 34412368 [TBL] [Abstract][Full Text] [Related]
18. Chaos and the quantum phase transition in the Dicke model. Emary C; Brandes T Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jun; 67(6 Pt 2):066203. PubMed ID: 16241322 [TBL] [Abstract][Full Text] [Related]
19. Extracting work from random collisions: A model of a quantum heat engine. Shaghaghi V; Palma GM; Benenti G Phys Rev E; 2022 Mar; 105(3-1):034101. PubMed ID: 35428074 [TBL] [Abstract][Full Text] [Related]
20. Dicke quantum phase transition with a superfluid gas in an optical cavity. Baumann K; Guerlin C; Brennecke F; Esslinger T Nature; 2010 Apr; 464(7293):1301-6. PubMed ID: 20428162 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]