These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 38366460)

  • 1. Estimation of the ice melting point in molecular dynamics simulations based on the finite-size effects.
    Ji S; Yang Z; Lei L; Galindo Torres SA; Li L
    Phys Rev E; 2024 Jan; 109(1-1):014108. PubMed ID: 38366460
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High precision determination of the melting points of water TIP4P/2005 and water TIP4P/Ice models by the direct coexistence technique.
    Conde MM; Rovere M; Gallo P
    J Chem Phys; 2017 Dec; 147(24):244506. PubMed ID: 29289125
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On the time required to freeze water.
    Espinosa JR; Navarro C; Sanz E; Valeriani C; Vega C
    J Chem Phys; 2016 Dec; 145(21):211922. PubMed ID: 28799362
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetic aspects of the thermostatted growth of ice from supercooled water in simulations.
    Weiss VC; Rullich M; Köhler C; Frauenheim T
    J Chem Phys; 2011 Jul; 135(3):034701. PubMed ID: 21787017
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Homogeneous ice nucleation at moderate supercooling from molecular simulation.
    Sanz E; Vega C; Espinosa JR; Caballero-Bernal R; Abascal JL; Valeriani C
    J Am Chem Soc; 2013 Oct; 135(40):15008-17. PubMed ID: 24010583
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The melting temperature of the most common models of water.
    Vega C; Sanz E; Abascal JL
    J Chem Phys; 2005 Mar; 122(11):114507. PubMed ID: 15836229
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of salt on the melting of ice: A molecular dynamics simulation study.
    Kim JS; Yethiraj A
    J Chem Phys; 2008 Sep; 129(12):124504. PubMed ID: 19045033
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The melting point of ice Ih for common water models calculated from direct coexistence of the solid-liquid interface.
    García Fernández R; Abascal JL; Vega C
    J Chem Phys; 2006 Apr; 124(14):144506. PubMed ID: 16626213
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Graphene confinement effects on melting/freezing point and structure and dynamics behavior of water.
    Foroutan M; Fatemi SM; Shokouh F
    J Mol Graph Model; 2016 May; 66():85-90. PubMed ID: 27041448
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crystallization, melting, and structure of water nanoparticles at atmospherically relevant temperatures.
    Johnston JC; Molinero V
    J Am Chem Soc; 2012 Apr; 134(15):6650-9. PubMed ID: 22452637
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Melting curves of ice polymorphs in the vicinity of the liquid-liquid critical point.
    Piaggi PM; Gartner TE; Car R; Debenedetti PG
    J Chem Phys; 2023 Aug; 159(5):. PubMed ID: 37531247
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Understanding electrofreezing in water simulations.
    Yan JY; Overduin SD; Patey GN
    J Chem Phys; 2014 Aug; 141(7):074501. PubMed ID: 25149795
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Replica exchange MD simulations of two-dimensional water in graphene nanocapillaries: rhombic versus square structures, proton ordering, and phase transitions.
    Li S; Schmidt B
    Phys Chem Chem Phys; 2019 Aug; 21(32):17640-17654. PubMed ID: 31364628
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Freezing, melting and structure of ice in a hydrophilic nanopore.
    Moore EB; de la Llave E; Welke K; Scherlis DA; Molinero V
    Phys Chem Chem Phys; 2010 Apr; 12(16):4124-34. PubMed ID: 20379503
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure of ice confined in silica nanopores.
    Mohammed S; Asgar H; Benmore CJ; Gadikota G
    Phys Chem Chem Phys; 2021 Jun; 23(22):12706-12717. PubMed ID: 34037014
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phase diagram of water in carbon nanotubes.
    Takaiwa D; Hatano I; Koga K; Tanaka H
    Proc Natl Acad Sci U S A; 2008 Jan; 105(1):39-43. PubMed ID: 18162549
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The performance of OPC water model in prediction of the phase equilibria of methane hydrate.
    Hao X; Li C; Liu C; Meng Q; Sun J
    J Chem Phys; 2022 Jul; 157(1):014504. PubMed ID: 35803825
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The mechanism by which fish antifreeze proteins cause thermal hysteresis.
    Kristiansen E; Zachariassen KE
    Cryobiology; 2005 Dec; 51(3):262-80. PubMed ID: 16140290
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Freezing Temperatures, Ice Nanotubes Structures, and Proton Ordering of TIP4P/ICE Water inside Single Wall Carbon Nanotubes.
    Pugliese P; Conde MM; Rovere M; Gallo P
    J Phys Chem B; 2017 Nov; 121(45):10371-10381. PubMed ID: 29040802
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Two-Dimensional Liquid Structure Explains the Elevated Melting Temperatures of Gallium Nanoclusters.
    Steenbergen KG; Gaston N
    Nano Lett; 2016 Jan; 16(1):21-6. PubMed ID: 26624938
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.