These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 38366541)

  • 1. First-passage area distribution and optimal fluctuations of fractional Brownian motion.
    Hartmann AK; Meerson B
    Phys Rev E; 2024 Jan; 109(1-1):014146. PubMed ID: 38366541
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Geometrical optics of large deviations of fractional Brownian motion.
    Meerson B; Oshanin G
    Phys Rev E; 2022 Jun; 105(6-1):064137. PubMed ID: 35854589
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anomalous diffusion, aging, and nonergodicity of scaled Brownian motion with fractional Gaussian noise: overview of related experimental observations and models.
    Wang W; Metzler R; Cherstvy AG
    Phys Chem Chem Phys; 2022 Aug; 24(31):18482-18504. PubMed ID: 35838015
    [TBL] [Abstract][Full Text] [Related]  

  • 4. First passage times for a tracer particle in single file diffusion and fractional Brownian motion.
    Sanders LP; Ambjörnsson T
    J Chem Phys; 2012 May; 136(17):175103. PubMed ID: 22583268
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Perturbation theory for fractional Brownian motion in presence of absorbing boundaries.
    Wiese KJ; Majumdar SN; Rosso A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jun; 83(6 Pt 1):061141. PubMed ID: 21797336
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sampling fractional Brownian motion in presence of absorption: a Markov chain method.
    Hartmann AK; Majumdar SN; Rosso A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Aug; 88(2):022119. PubMed ID: 24032787
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Distinguishing between fractional Brownian motion with random and constant Hurst exponent using sample autocovariance-based statistics.
    Grzesiek A; Gajda J; Thapa S; Wyłomańska A
    Chaos; 2024 Apr; 34(4):. PubMed ID: 38668586
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anomalous diffusion and nonergodicity for heterogeneous diffusion processes with fractional Gaussian noise.
    Wang W; Cherstvy AG; Liu X; Metzler R
    Phys Rev E; 2020 Jul; 102(1-1):012146. PubMed ID: 32794926
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Memory effects in fractional Brownian motion with Hurst exponent H<1/3.
    Bologna M; Vanni F; Krokhin A; Grigolini P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Aug; 82(2 Pt 1):020102. PubMed ID: 20866763
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Persistence of a particle in the Matheron-de Marsily velocity field.
    Majumdar SN
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Nov; 68(5 Pt 1):050101. PubMed ID: 14682777
    [TBL] [Abstract][Full Text] [Related]  

  • 11. First-passage functionals of Brownian motion in logarithmic potentials and heterogeneous diffusion.
    Radice M
    Phys Rev E; 2023 Oct; 108(4-1):044151. PubMed ID: 37978608
    [TBL] [Abstract][Full Text] [Related]  

  • 12. First passage in an interval for fractional Brownian motion.
    Wiese KJ
    Phys Rev E; 2019 Mar; 99(3-1):032106. PubMed ID: 30999514
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Testing of Multifractional Brownian Motion.
    Balcerek M; Burnecki K
    Entropy (Basel); 2020 Dec; 22(12):. PubMed ID: 33322676
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Path integrals for fractional Brownian motion and fractional Gaussian noise.
    Meerson B; Bénichou O; Oshanin G
    Phys Rev E; 2022 Dec; 106(6):L062102. PubMed ID: 36671110
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Maximum of a Fractional Brownian Motion: Analytic Results from Perturbation Theory.
    Delorme M; Wiese KJ
    Phys Rev Lett; 2015 Nov; 115(21):210601. PubMed ID: 26636835
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamical phase transition in large-deviation statistics of the Kardar-Parisi-Zhang equation.
    Janas M; Kamenev A; Meerson B
    Phys Rev E; 2016 Sep; 94(3-1):032133. PubMed ID: 27739741
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fractional non-Brownian motion and trapping-time distributions of grains in rice piles.
    Hopcraft KI; Tanner RM; Jakeman E; Graves JP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Aug; 64(2 Pt 2):026121. PubMed ID: 11497665
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Extreme-value statistics of fractional Brownian motion bridges.
    Delorme M; Wiese KJ
    Phys Rev E; 2016 Nov; 94(5-1):052105. PubMed ID: 27967044
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Geometrical optics of first-passage functionals of random acceleration.
    Meerson B
    Phys Rev E; 2023 Jun; 107(6-1):064122. PubMed ID: 37464606
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Statistical properties of the anomalous scaling exponent estimator based on time-averaged mean-square displacement.
    Sikora G; Teuerle M; Wyłomańska A; Grebenkov D
    Phys Rev E; 2017 Aug; 96(2-1):022132. PubMed ID: 28950534
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.