These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 38366622)
1. Clinical efficacy of motion-insensitive imaging technique with deep learning reconstruction to improve image quality in cervical spine MR imaging. Song YS; Lee IS; Hwang M; Jang K; Wang X; Fung M Br J Radiol; 2024 Mar; 97(1156):812-819. PubMed ID: 38366622 [TBL] [Abstract][Full Text] [Related]
2. Comparison of FSE T2 W PROPELLER and 3D-FIESTA of 3 T MR for the internal auditory canal. Wu HB; Yuan HS; Ma F; Zhao Q Clin Imaging; 2017; 45():30-33. PubMed ID: 28595058 [TBL] [Abstract][Full Text] [Related]
3. Effect of Deep Learning Reconstruction on Respiratory-triggered T2-weighted MR Imaging of the Liver: A Comparison between the Single-shot Fast Spin-echo and Fast Spin-echo Sequences. Kiso K; Tsuboyama T; Onishi H; Ogawa K; Nakamoto A; Tatsumi M; Ota T; Fukui H; Yano K; Honda T; Kakemoto S; Koyama Y; Tarewaki H; Tomiyama N Magn Reson Med Sci; 2024 Apr; 23(2):214-224. PubMed ID: 36990740 [TBL] [Abstract][Full Text] [Related]
4. Super-resolution deep learning reconstruction approach for enhanced visualization in lumbar spine MR bone imaging. Hokamura M; Nakaura T; Yoshida N; Uetani H; Shiraishi K; Kobayashi N; Matsuo K; Morita K; Nagayama Y; Kidoh M; Yamashita Y; Miyamoto T; Hirai T Eur J Radiol; 2024 Sep; 178():111587. PubMed ID: 39002269 [TBL] [Abstract][Full Text] [Related]
5. Effectiveness of the periodically rotated overlapping parallel lines with enhanced reconstruction (PROPELLER) technique for reducing motion artifacts caused by mandibular movements on fat-suppressed T2-weighted magnetic resonance (MR) images. Shimamoto H; Tsujimoto T; Kakimoto N; Majima M; Iwamoto Y; Senda Y; Murakami S Magn Reson Imaging; 2018 Dec; 54():1-7. PubMed ID: 30077782 [TBL] [Abstract][Full Text] [Related]
6. Deep learning reconstruction for 1.5 T cervical spine MRI: effect on interobserver agreement in the evaluation of degenerative changes. Yasaka K; Tanishima T; Ohtake Y; Tajima T; Akai H; Ohtomo K; Abe O; Kiryu S Eur Radiol; 2022 Sep; 32(9):6118-6125. PubMed ID: 35348861 [TBL] [Abstract][Full Text] [Related]
7. Application of deep learning-based image reconstruction in MR imaging of the shoulder joint to improve image quality and reduce scan time. Kaniewska M; Deininger-Czermak E; Getzmann JM; Wang X; Lohezic M; Guggenberger R Eur Radiol; 2023 Mar; 33(3):1513-1525. PubMed ID: 36166084 [TBL] [Abstract][Full Text] [Related]
8. Ultra-High-Resolution T2-Weighted PROPELLER MRI of the Rectum With Deep Learning Reconstruction: Assessment of Image Quality and Diagnostic Performance. Matsumoto S; Tsuboyama T; Onishi H; Fukui H; Honda T; Wakayama T; Wang X; Matsui T; Nakamoto A; Ota T; Kiso K; Osawa K; Tomiyama N Invest Radiol; 2024 Jul; 59(7):479-488. PubMed ID: 37975732 [TBL] [Abstract][Full Text] [Related]
9. A Feasibility Study on Deep Learning Reconstruction to Improve Image Quality With PROPELLER Acquisition in the Setting of T2-Weighted Gynecologic Pelvic Magnetic Resonance Imaging. Saleh M; Virarkar M; Javadi S; Mathew M; Vulasala SSR; Son JB; Sun J; Bayram E; Wang X; Ma J; Szklaruk J; Bhosale P J Comput Assist Tomogr; 2023 Sep-Oct 01; 47(5):721-728. PubMed ID: 37707401 [TBL] [Abstract][Full Text] [Related]
10. Comparison of deep learning-based reconstruction of PROPELLER Shoulder MRI with conventional reconstruction. Hahn S; Yi J; Lee HJ; Lee Y; Lee J; Wang X; Fung M Skeletal Radiol; 2023 Aug; 52(8):1545-1555. PubMed ID: 36943429 [TBL] [Abstract][Full Text] [Related]
11. Benefits and pitfalls of iterative decomposition of water and fat with echo asymmetry and least-squares estimation (IDEAL) imaging in clinical application of the cervical spine MR. Chiang IC; Chuang WS; Hang IT; Kuo YT; Hsieh TJ Clin Radiol; 2019 Jan; 74(1):78.e13-78.e21. PubMed ID: 30314808 [TBL] [Abstract][Full Text] [Related]
12. Performance of PROPELLER FSE T Li W; Shi J; Bian W; Li J; Chen X; Feng J; Yu J; Wang J; Niu J Sci Rep; 2022 May; 12(1):8442. PubMed ID: 35589945 [TBL] [Abstract][Full Text] [Related]
13. Hepatic lesions: improved image quality and detection with the periodically rotated overlapping parallel lines with enhanced reconstruction technique--evaluation of SPIO-enhanced T2-weighted MR images. Hirokawa Y; Isoda H; Maetani YS; Arizono S; Shimada K; Okada T; Shibata T; Togashi K Radiology; 2009 May; 251(2):388-97. PubMed ID: 19401572 [TBL] [Abstract][Full Text] [Related]
14. Clinical feasibility of an abdominal thin-slice breath-hold single-shot fast spin echo sequence processed using a deep learning-based noise-reduction approach. Tajima T; Akai H; Yasaka K; Kunimatsu A; Akahane M; Yoshioka N; Abe O; Ohtomo K; Kiryu S Magn Reson Imaging; 2022 Jul; 90():76-83. PubMed ID: 35504409 [TBL] [Abstract][Full Text] [Related]
15. Assessment of image quality and diagnostic accuracy for cervical spondylosis using T2w-STIR sequence with a deep learning-based reconstruction approach. Tao Q; Wang K; Wen B; Kang Y; Dang J; Sun J; Niu X; Zhang M; Liu Z; Wang W; Zhang Y; Cheng J Eur Spine J; 2024 Aug; 33(8):2982-2996. PubMed ID: 39007984 [TBL] [Abstract][Full Text] [Related]
16. Impact of Deep Learning Reconstruction Combined With a Sharpening Filter on Single-Shot Fast Spin-Echo T2-Weighted Magnetic Resonance Imaging of the Uterus. Tsuboyama T; Onishi H; Nakamoto A; Ogawa K; Koyama Y; Tarewaki H; Tomiyama N Invest Radiol; 2022 Jun; 57(6):379-386. PubMed ID: 34999668 [TBL] [Abstract][Full Text] [Related]
17. Deep learning reconstruction for the evaluation of neuroforaminal stenosis using 1.5T cervical spine MRI: comparison with 3T MRI without deep learning reconstruction. Yasaka K; Tanishima T; Ohtake Y; Tajima T; Akai H; Ohtomo K; Abe O; Kiryu S Neuroradiology; 2022 Oct; 64(10):2077-2083. PubMed ID: 35918450 [TBL] [Abstract][Full Text] [Related]
18. Deep learning-based reconstruction and 3D hybrid profile order technique for MRCP at 3T: evaluation of image quality and acquisition time. Shiraishi K; Nakaura T; Uetani H; Nagayama Y; Kidoh M; Kobayashi N; Morita K; Yamahita Y; Tanaka Y; Baba H; Hirai T Eur Radiol; 2023 Nov; 33(11):7585-7594. PubMed ID: 37178197 [TBL] [Abstract][Full Text] [Related]
19. Comparison of T1-weighted fast spin-echo and T1-weighted fluid-attenuated inversion recovery images of the lumbar spine at 3.0 Tesla. Lavdas E; Vlychou M; Arikidis N; Kapsalaki E; Roka V; Fezoulidis IV Acta Radiol; 2010 Apr; 51(3):290-5. PubMed ID: 20170294 [TBL] [Abstract][Full Text] [Related]
20. Feasibility of high-resolution magnetic resonance imaging of the liver using deep learning reconstruction based on the deep learning denoising technique. Tanabe M; Higashi M; Yonezawa T; Yamaguchi T; Iida E; Furukawa M; Okada M; Shinoda K; Ito K Magn Reson Imaging; 2021 Jul; 80():121-126. PubMed ID: 33971240 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]