These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 3836676)

  • 1. A role for the magnetic field in the radiation-induced efflux of calcium ions from brain tissue in vitro.
    Blackman CF; Benane SG; Rabinowitz JR; House DE; Joines WT
    Bioelectromagnetics; 1985; 6(4):327-37. PubMed ID: 3836676
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of ELF (1-120 Hz) and modulated (50 Hz) RF fields on the efflux of calcium ions from brain tissue in vitro.
    Blackman CF; Benane SG; House DE; Joines WT
    Bioelectromagnetics; 1985; 6(1):1-11. PubMed ID: 3977964
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of electromagnetic fields on the efflux of calcium ions from brain tissue in vitro: a three-model analysis consistent with the frequency response up to 510 Hz.
    Blackman CF; Benane SG; Elliott DJ; House DE; Pollock MM
    Bioelectromagnetics; 1988; 9(3):215-27. PubMed ID: 3178897
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of ambient levels of power-line-frequency electric fields on a developing vertebrate.
    Blackman CF; House DE; Benane SG; Joines WT; Spiegel RJ
    Bioelectromagnetics; 1988; 9(2):129-40. PubMed ID: 3377861
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The influence of temperature during electric- and magnetic-field-induced alteration of calcium-ion release from in vitro brain tissue.
    Blackman CF; Benane SG; House DE
    Bioelectromagnetics; 1991; 12(3):173-82. PubMed ID: 1854354
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiple power-density windows and their possible origin.
    Blackman CF; Kinney LS; House DE; Joines WT
    Bioelectromagnetics; 1989; 10(2):115-28. PubMed ID: 2540755
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Calcium-ion efflux from brain tissue: power-density versus internal field-intensity dependencies at 50-MHz RF radiation.
    Blackman CF; Benane SG; Joines WT; Hollis MA; House DE
    Bioelectromagnetics; 1980; 1(3):277-83. PubMed ID: 7284026
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Importance of alignment between local DC magnetic field and an oscillating magnetic field in responses of brain tissue in vitro and in vivo.
    Blackman CF; Benane SG; House DE; Elliott DJ
    Bioelectromagnetics; 1990; 11(2):159-67. PubMed ID: 2242051
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exposure of frog hearts to CW or amplitude-modulated VHF fields: selective efflux of calcium ions at 16 Hz.
    Schwartz JL; House DE; Mealing GA
    Bioelectromagnetics; 1990; 11(4):349-58. PubMed ID: 2285418
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Weak extremely-low-frequency magnetic field-induced regeneration anomalies in the planarian Dugesia tigrina.
    Jenrow KA; Smith CH; Liboff AR
    Bioelectromagnetics; 1996; 17(6):467-74. PubMed ID: 8986364
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Power density, field intensity, and carrier frequency determinants of RF-energy-induced calcium-ion efflux from brain tissue.
    Joines WT; Blackman CF
    Bioelectromagnetics; 1980; 1(3):271-5. PubMed ID: 7284025
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of combined DC and AC magnetic fields on germination of hornwort seeds.
    Kobayashi M; Soda N; Miyo T; Ueda Y
    Bioelectromagnetics; 2004 Oct; 25(7):552-9. PubMed ID: 15376241
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Frequency-dependent effects of ELF magnetic field on chromatin conformation in Escherichia coli cells and human lymphocytes.
    Belyaev IY; Alipov ED
    Biochim Biophys Acta; 2001 Jun; 1526(3):269-76. PubMed ID: 11410336
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Induction of calcium-ion efflux from brain tissue by radiofrequency radiation: effect of sample number and modulation frequency on the power-density window.
    Blackman CF; Benane SG; Elder JA; House DE; Lampe JA; Faulk JM
    Bioelectromagnetics; 1980; 1(1):35-43. PubMed ID: 7284014
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Calcium efflux of plasma membrane vesicles exposed to ELF magnetic fields--test of a nuclear magnetic resonance interaction model.
    Sun WJ; Mogadam MK; Sommarin M; Nittby H; Salford LG; Persson BR; Eberhardt JL
    Bioelectromagnetics; 2012 Oct; 33(7):535-42. PubMed ID: 22487968
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of ELF fields on calcium-ion efflux from brain tissue in vitro.
    Blackman CF; Benane SG; Kinney LS; Joines WT; House DE
    Radiat Res; 1982 Dec; 92(3):510-20. PubMed ID: 7178417
    [No Abstract]   [Full Text] [Related]  

  • 17. [Effects of extremely low frequency weak magnetic fields on the intracellular free calcium concentration in PC-12 tumor cells].
    Huang C; Ye H; Xu J; Liu J; Qu A
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2000 Mar; 17(1):63-5, 94. PubMed ID: 10879196
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Calcium uptake by leukemic and normal T-lymphocytes exposed to low frequency magnetic fields.
    Lyle DB; Wang XH; Ayotte RD; Sheppard AR; Adey WR
    Bioelectromagnetics; 1991; 12(3):145-56. PubMed ID: 1854352
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lack of an effect of static magnetic field on calcium efflux from isolated chick brains.
    Bellossi A
    Bioelectromagnetics; 1986; 7(4):381-6. PubMed ID: 3801061
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vitro study of microwave effects on calcium efflux in rat brain tissue.
    Shelton WW; Merritt JH
    Bioelectromagnetics; 1981; 2(2):161-7. PubMed ID: 7295363
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.