BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 38366780)

  • 1. Unfilled gaps by polβ lead to aberrant ligation by LIG1 at the downstream steps of base excision repair pathway.
    Gulkis M; Martinez E; Almohdar D; Çağlayan M
    Nucleic Acids Res; 2024 Apr; 52(7):3810-3822. PubMed ID: 38366780
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of DNA ligase 1 and IIIα interactions with APE1 and polβ on the efficiency of base excision repair pathway at the downstream steps.
    Almohdar D; Murcia D; Tang Q; Ortiz A; Martinez E; Parwal T; Kamble P; Çağlayan M
    J Biol Chem; 2024 May; 300(6):107355. PubMed ID: 38718860
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structures of LIG1 that engage with mutagenic mismatches inserted by polβ in base excision repair.
    Tang Q; Gulkis M; McKenna R; Çağlayan M
    Nat Commun; 2022 Jul; 13(1):3860. PubMed ID: 35790757
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DNA ligase I fidelity mediates the mutagenic ligation of pol β oxidized and mismatch nucleotide insertion products in base excision repair.
    Kamble P; Hall K; Chandak M; Tang Q; Çağlayan M
    J Biol Chem; 2021; 296():100427. PubMed ID: 33600799
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of DNA ligase inhibition on the nick sealing of polβ nucleotide insertion products at the downstream steps of base excision repair pathway.
    Almohdar D; Kamble P; Basavannacharya C; Gulkis M; Calbay O; Huang S; Narayan S; Çağlayan M
    Mutagenesis; 2024 May; ():. PubMed ID: 38736258
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The scaffold protein XRCC1 stabilizes the formation of polβ/gap DNA and ligase IIIα/nick DNA complexes in base excision repair.
    Tang Q; Çağlayan M
    J Biol Chem; 2021 Sep; 297(3):101025. PubMed ID: 34339737
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of polβ/XRCC1 Interaction Variants on the Efficiency of Nick Sealing by DNA Ligase IIIα in the Base Excision Repair Pathway.
    Almohdar D; Gulkis M; Ortiz A; Tang Q; Sobol RW; Çağlayan M
    J Mol Biol; 2024 Feb; 436(4):168410. PubMed ID: 38135179
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural and biochemical characterization of LIG1 during mutagenic nick sealing of oxidatively damaged ends at the final step of DNA repair.
    Balu KE; Almohdar D; Ratcliffe J; Tang Q; Parwal T; Çağlayan M
    bioRxiv; 2024 May; ():. PubMed ID: 38766188
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Arabidopsis ARP endonuclease functions in a branched base excision DNA repair pathway completed by LIG1.
    Córdoba-Cañero D; Roldán-Arjona T; Ariza RR
    Plant J; 2011 Nov; 68(4):693-702. PubMed ID: 21781197
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modulation of the Apurinic/Apyrimidinic Endonuclease Activity of Human APE1 and of Its Natural Polymorphic Variants by Base Excision Repair Proteins.
    Kladova OA; Alekseeva IV; Saparbaev M; Fedorova OS; Kuznetsov NA
    Int J Mol Sci; 2020 Sep; 21(19):. PubMed ID: 32998246
    [TBL] [Abstract][Full Text] [Related]  

  • 11. When DNA repair goes wrong: BER-generated DNA-protein crosslinks to oxidative lesions.
    Quiñones JL; Demple B
    DNA Repair (Amst); 2016 Aug; 44():103-109. PubMed ID: 27264558
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coordination between human DNA polymerase β and apurinic/apyrimidinic endonuclease 1 in the course of DNA repair.
    Bakman AS; Boichenko SS; Kuznetsova AA; Ishchenko AA; Saparbaev M; Kuznetsov NA
    Biochimie; 2024 Jan; 216():126-136. PubMed ID: 37806619
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Visualizing the coordination of apurinic/apyrimidinic endonuclease (APE1) and DNA polymerase β during base excision repair.
    Fairlamb MS; Spies M; Washington MT; Freudenthal BD
    J Biol Chem; 2023 May; 299(5):104636. PubMed ID: 36963489
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A chemical and kinetic perspective on base excision repair of DNA.
    Schermerhorn KM; Delaney S
    Acc Chem Res; 2014 Apr; 47(4):1238-46. PubMed ID: 24646203
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Probing conformational changes in Ape1 during the progression of base excision repair.
    Yu E; Gaucher SP; Hadi MZ
    Biochemistry; 2010 May; 49(18):3786-96. PubMed ID: 20377204
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of Human XRCC1 Protein Oxidation on the Functional Activity of Its Complexes with the Key Enzymes of DNA Base Excision Repair.
    Vasil'eva IA; Moor NA; Lavrik OI
    Biochemistry (Mosc); 2020 Mar; 85(3):288-299. PubMed ID: 32564733
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mammalian abasic site base excision repair. Identification of the reaction sequence and rate-determining steps.
    Srivastava DK; Berg BJ; Prasad R; Molina JT; Beard WA; Tomkinson AE; Wilson SH
    J Biol Chem; 1998 Aug; 273(33):21203-9. PubMed ID: 9694877
    [TBL] [Abstract][Full Text] [Related]  

  • 18. AP endonuclease 1 prevents the extension of a T/G mismatch by DNA polymerase β to prevent mutations in CpGs during base excision repair.
    Lai Y; Jiang Z; Zhou J; Osemota E; Liu Y
    DNA Repair (Amst); 2016 Jul; 43():89-97. PubMed ID: 27183823
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative characterization of protein-protein complexes involved in base excision DNA repair.
    Moor NA; Vasil'eva IA; Anarbaev RO; Antson AA; Lavrik OI
    Nucleic Acids Res; 2015 Jul; 43(12):6009-22. PubMed ID: 26013813
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fluorescently labeled human apurinic/apyrimidinic endonuclease APE1 reveals effects of DNA polymerase β on the APE1-DNA interaction.
    Bakman AS; Kuznetsova AA; Yanshole LV; Ishchenko AA; Saparbaev M; Fedorova OS; Kuznetsov NA
    DNA Repair (Amst); 2023 Mar; 123():103450. PubMed ID: 36689867
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.