These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 38366974)

  • 21. GraphPLBR: Protein-Ligand Binding Residue Prediction With Deep Graph Convolution Network.
    Wang W; Sun B; Yu M; Wu S; Liu D; Zhang H; Zhou Y
    IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(3):2223-2232. PubMed ID: 37022086
    [TBL] [Abstract][Full Text] [Related]  

  • 22. From Proteins to Ligands: Decoding Deep Learning Methods for Binding Affinity Prediction.
    Gorantla R; Kubincová A; Weiße AY; Mey ASJS
    J Chem Inf Model; 2024 Apr; 64(7):2496-2507. PubMed ID: 37983381
    [TBL] [Abstract][Full Text] [Related]  

  • 23. PLANET: A Multi-objective Graph Neural Network Model for Protein-Ligand Binding Affinity Prediction.
    Zhang X; Gao H; Wang H; Chen Z; Zhang Z; Chen X; Li Y; Qi Y; Wang R
    J Chem Inf Model; 2024 Apr; 64(7):2205-2220. PubMed ID: 37319418
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Iterative Knowledge-Based Scoring Functions Derived from Rigid and Flexible Decoy Structures: Evaluation with the 2013 and 2014 CSAR Benchmarks.
    Yan C; Grinter SZ; Merideth BR; Ma Z; Zou X
    J Chem Inf Model; 2016 Jun; 56(6):1013-21. PubMed ID: 26389744
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A New Hybrid Neural Network Deep Learning Method for Protein-Ligand Binding Affinity Prediction and De Novo Drug Design.
    Limbu S; Dakshanamurthy S
    Int J Mol Sci; 2022 Nov; 23(22):. PubMed ID: 36430386
    [TBL] [Abstract][Full Text] [Related]  

  • 26. OnionNet-2: A Convolutional Neural Network Model for Predicting Protein-Ligand Binding Affinity Based on Residue-Atom Contacting Shells.
    Wang Z; Zheng L; Liu Y; Qu Y; Li YQ; Zhao M; Mu Y; Li W
    Front Chem; 2021; 9():753002. PubMed ID: 34778208
    [TBL] [Abstract][Full Text] [Related]  

  • 27. BACPI: a bi-directional attention neural network for compound-protein interaction and binding affinity prediction.
    Li M; Lu Z; Wu Y; Li Y
    Bioinformatics; 2022 Mar; 38(7):1995-2002. PubMed ID: 35043942
    [TBL] [Abstract][Full Text] [Related]  

  • 28. CSConv2d: A 2-D Structural Convolution Neural Network with a Channel and Spatial Attention Mechanism for Protein-Ligand Binding Affinity Prediction.
    Wang X; Liu D; Zhu J; Rodriguez-Paton A; Song T
    Biomolecules; 2021 Apr; 11(5):. PubMed ID: 33925310
    [TBL] [Abstract][Full Text] [Related]  

  • 29. PfgPDI: Pocket feature-enabled graph neural network for protein-drug interaction prediction.
    Zhang Y; Zhou C
    J Bioinform Comput Biol; 2024 Apr; 22(2):2450004. PubMed ID: 38812467
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Solvated interaction energy (SIE) for scoring protein-ligand binding affinities. 2. Benchmark in the CSAR-2010 scoring exercise.
    Sulea T; Cui Q; Purisima EO
    J Chem Inf Model; 2011 Sep; 51(9):2066-81. PubMed ID: 21714553
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Learning long- and short-term dependencies for improving drug-target binding affinity prediction using transformer and edge contraction pooling.
    Gao M; Jiang S; Ding W; Xu T; Lyu Z
    J Bioinform Comput Biol; 2024 Feb; 22(1):2350030. PubMed ID: 38567388
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Geometric graph learning with extended atom-types features for protein-ligand binding affinity prediction.
    Rana MM; Nguyen DD
    Comput Biol Med; 2023 Sep; 164():107250. PubMed ID: 37515872
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Equivariant Line Graph Neural Network for Protein-Ligand Binding Affinity Prediction.
    Yi Y; Wan X; Zhao K; Ou-Yang L; Zhao P
    IEEE J Biomed Health Inform; 2024 Jul; 28(7):4336-4347. PubMed ID: 38551822
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dual graph convolutional neural network for predicting chemical networks.
    Harada S; Akita H; Tsubaki M; Baba Y; Takigawa I; Yamanishi Y; Kashima H
    BMC Bioinformatics; 2020 Apr; 21(Suppl 3):94. PubMed ID: 32321421
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Improving structure-based protein-ligand affinity prediction by graph representation learning and ensemble learning.
    Guo J
    PLoS One; 2024; 19(1):e0296676. PubMed ID: 38232063
    [TBL] [Abstract][Full Text] [Related]  

  • 36. GEMF: a novel geometry-enhanced mid-fusion network for PLA prediction.
    Zhou G; Qin Y; Hong Q; Li H; Chen H; Shen J
    Brief Bioinform; 2024 May; 25(4):. PubMed ID: 38980371
    [TBL] [Abstract][Full Text] [Related]  

  • 37. On the Frustration to Predict Binding Affinities from Protein-Ligand Structures with Deep Neural Networks.
    Volkov M; Turk JA; Drizard N; Martin N; Hoffmann B; Gaston-Mathé Y; Rognan D
    J Med Chem; 2022 Jun; 65(11):7946-7958. PubMed ID: 35608179
    [TBL] [Abstract][Full Text] [Related]  

  • 38. DeepNC: a framework for drug-target interaction prediction with graph neural networks.
    Tran HNT; Thomas JJ; Ahamed Hassain Malim NH
    PeerJ; 2022; 10():e13163. PubMed ID: 35578674
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The Impact of Data on Structure-Based Binding Affinity Predictions Using Deep Neural Networks.
    Libouban PY; Aci-Sèche S; Gómez-Tamayo JC; Tresadern G; Bonnet P
    Int J Mol Sci; 2023 Nov; 24(22):. PubMed ID: 38003312
    [TBL] [Abstract][Full Text] [Related]  

  • 40. K
    Jiménez J; Škalič M; Martínez-Rosell G; De Fabritiis G
    J Chem Inf Model; 2018 Feb; 58(2):287-296. PubMed ID: 29309725
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.