These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 38367376)

  • 1. Do baseline assumptions alter the efficacy of green stormwater infrastructure to reduce combined sewer overflows?
    Rodriguez M; Cavadini GB; Cook LM
    Water Res; 2024 Apr; 253():121284. PubMed ID: 38367376
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Connecting blue-green infrastructure elements to reduce combined sewer overflows.
    Cavadini GB; Rodriguez M; Cook LM
    J Environ Manage; 2024 Aug; 365():121465. PubMed ID: 38901320
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Global resilience analysis of combined sewer systems under continuous hydrologic simulation.
    Rodriguez M; Fu G; Butler D; Yuan Z; Cook L
    J Environ Manage; 2023 Oct; 344():118607. PubMed ID: 37453297
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of a scenario-based stormwater management planning support system for reducing combined sewer overflows (CSOs).
    Fu X; Goddard H; Wang X; Hopton ME
    J Environ Manage; 2019 Apr; 236():571-580. PubMed ID: 30771676
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Not all SuDS are created equal: Impact of different approaches on combined sewer overflows.
    Joshi P; Leitão JP; Maurer M; Bach PM
    Water Res; 2021 Mar; 191():116780. PubMed ID: 33422977
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Relationship between infiltration, sewer rehabilitation, and groundwater flooding in coastal urban areas.
    Su X; Liu T; Beheshti M; Prigiobbe V
    Environ Sci Pollut Res Int; 2020 May; 27(13):14288-14298. PubMed ID: 31686335
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of green infrastructure on resilience performance in combined sewer systems under climate change.
    Rodriguez M; Fu G; Butler D; Yuan Z; Cook L
    J Environ Manage; 2024 Feb; 353():120229. PubMed ID: 38310790
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessing the impact of climate change on Combined Sewer Overflows based on small time step future rainfall timeseries and long-term continuous sewer network modelling.
    Gogien F; Dechesne M; Martinerie R; Lipeme Kouyi G
    Water Res; 2023 Feb; 230():119504. PubMed ID: 36621275
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combined sewer overflow control with LID based on SWMM: an example in Shanghai, China.
    Liao ZL; Zhang GQ; Wu ZH; He Y; Chen H
    Water Sci Technol; 2015; 71(8):1136-42. PubMed ID: 25909722
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regression modeling of combined sewer overflows to assess system performance.
    A Bizer M; Kirchhoff CJ
    Water Sci Technol; 2022 Dec; 86(11):2848-2860. PubMed ID: 36515193
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessing the influence of urban greenness and green stormwater infrastructure on hydrology from satellite remote sensing.
    Conley G; McDonald RI; Nodine T; Chapman T; Holland C; Hawkins C; Beck N
    Sci Total Environ; 2022 Apr; 817():152723. PubMed ID: 34979231
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Full Water-Cycle Monitoring in an Urban Catchment Reveals Unexpected Water Transfers (Detroit MI, USA).
    Hoard CJ; Haefner RJ; Shuster WD; Pieschek RL; Beeler S
    J Am Water Resour Assoc; 2020 Feb; 56(1):82-99. PubMed ID: 32801611
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluating rain gardens as a method to reduce the impact of sewer overflows in sources of drinking water.
    Autixier L; Mailhot A; Bolduc S; Madoux-Humery AS; Galarneau M; Prévost M; Dorner S
    Sci Total Environ; 2014 Nov; 499():238-47. PubMed ID: 25192930
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evapotranspiration in green stormwater infrastructure systems.
    Ebrahimian A; Wadzuk B; Traver R
    Sci Total Environ; 2019 Oct; 688():797-810. PubMed ID: 31255818
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Current and future approaches to wet weather flow management: A review.
    Peters PE; Zitomer DH
    Water Environ Res; 2021 Aug; 93(8):1179-1193. PubMed ID: 33393150
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Is flow control in a space-constrained drainage network effective? A performance assessment for combined sewer overflow reduction.
    Wang W; Leitão JP; Wani O
    Environ Res; 2021 Nov; 202():111688. PubMed ID: 34293307
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Organic micropollutants discharged by combined sewer overflows - Characterisation of pollutant sources and stormwater-related processes.
    Launay MA; Dittmer U; Steinmetz H
    Water Res; 2016 Nov; 104():82-92. PubMed ID: 27518145
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Extreme Precipitation and Emergency Room Visits for Gastrointestinal Illness in Areas with and without Combined Sewer Systems: An Analysis of Massachusetts Data, 2003-2007.
    Jagai JS; Li Q; Wang S; Messier KP; Wade TJ; Hilborn ED
    Environ Health Perspect; 2015 Sep; 123(9):873-9. PubMed ID: 25855939
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Source apportionment of pollutants and flows of combined sewer wastewater.
    Soonthornnonda P; Christensen ER
    Water Res; 2008 Apr; 42(8-9):1989-98. PubMed ID: 18164048
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effectiveness Analysis of Systematic Combined Sewer Overflow Control Schemes in the Sponge City Pilot Area of Beijing.
    Gong Y; Chen Y; Yu L; Li J; Pan X; Shen Z; Xu X; Qiu Q
    Int J Environ Res Public Health; 2019 Apr; 16(9):. PubMed ID: 31035357
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.