These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 38367437)
1. Earthworm lipid content and size help account for differences in pesticide bioconcentration between species. Li J; Hodson ME; Brown CD; Bottoms MJ; Ashauer R; Alvarez T J Hazard Mater; 2024 Apr; 468():133744. PubMed ID: 38367437 [TBL] [Abstract][Full Text] [Related]
2. A User-Friendly Kinetic Model Incorporating Regression Models for Estimating Pesticide Accumulation in Diverse Earthworm Species Across Varied Soils. Li J; Hodson ME; Brown CD; Bottoms MJ; Ashauer R; Alvarez T Environ Sci Technol; 2024 Aug; 58(32):14555-14564. PubMed ID: 39083655 [TBL] [Abstract][Full Text] [Related]
3. Evaluation of models to estimate the bioaccumulation of organic chemicals in earthworms. Li J; Hodson ME; Brown CD; Bottoms MJ; Ashauer R; Alvarez T Ecotoxicol Environ Saf; 2024 Apr; 275():116240. PubMed ID: 38520811 [TBL] [Abstract][Full Text] [Related]
4. Aporrectodea caliginosa, a relevant earthworm species for a posteriori pesticide risk assessment: current knowledge and recommendations for culture and experimental design. Bart S; Amossé J; Lowe CN; Mougin C; Péry ARR; Pelosi C Environ Sci Pollut Res Int; 2018 Dec; 25(34):33867-33881. PubMed ID: 29931645 [TBL] [Abstract][Full Text] [Related]
5. Uptake kinetics of pesticides chlorpyrifos and tebuconazole in the earthworm Eisenia andrei in two different soils. Svobodová M; Šmídová K; Hvězdová M; Hofman J Environ Pollut; 2018 May; 236():257-264. PubMed ID: 29414347 [TBL] [Abstract][Full Text] [Related]
6. Influence of plant-earthworm interactions on SOM chemistry and p,p'-DDE bioaccumulation. Kelsey JW; Slizovskiy IB; Petriello MC; Butler KL Chemosphere; 2011 May; 83(7):897-902. PubMed ID: 21421253 [TBL] [Abstract][Full Text] [Related]
7. Predicting the bioremediation potential of earthworms of different ecotypes through a multi-biomarker approach. Sanchez-Hernandez JC; Narváez C; Cares XA; Sabat P; Naidu R Sci Total Environ; 2023 Mar; 862():160547. PubMed ID: 36481136 [TBL] [Abstract][Full Text] [Related]
8. Variation in the Chemical Sensitivity of Earthworms from Field Populations to Imidacloprid and Copper. Duque T; Nuriyev R; Römbke J; Schäfer RB; Entling MH Environ Toxicol Chem; 2023 Apr; 42(4):939-947. PubMed ID: 36807377 [TBL] [Abstract][Full Text] [Related]
9. Synthesis of earthworm trace metal uptake and bioaccumulation data: Role of soil concentration, earthworm ecophysiology, and experimental design. Richardson JB; Görres JH; Sizmur T Environ Pollut; 2020 Jul; 262():114126. PubMed ID: 32120252 [TBL] [Abstract][Full Text] [Related]
10. Searching for a more sensitive earthworm species to be used in pesticide homologation tests - a meta-analysis. Pelosi C; Joimel S; Makowski D Chemosphere; 2013 Jan; 90(3):895-900. PubMed ID: 23084259 [TBL] [Abstract][Full Text] [Related]
11. Does Uptake of Pharmaceuticals Vary Across Earthworm Species? Carter LJ; Ryan JJ; Boxall AB Bull Environ Contam Toxicol; 2016 Sep; 97(3):316-22. PubMed ID: 27443341 [TBL] [Abstract][Full Text] [Related]
12. Bioconcentration, bioaccumulation, and metabolism of pesticides in aquatic organisms. Katagi T Rev Environ Contam Toxicol; 2010; 204():1-132. PubMed ID: 19957234 [TBL] [Abstract][Full Text] [Related]
13. Bioaccumulation of PCBs and their hydroxy and sulfonated metabolites in earthworms: Comparing lab and field results. Palladini J; Bagnati R; Passoni A; Davoli E; Lanno A; Terzaghi E; Falakdin P; Di Guardo A Environ Pollut; 2022 Jan; 293():118507. PubMed ID: 34800589 [TBL] [Abstract][Full Text] [Related]
14. Insights into the molecular mechanisms of pesticide tolerance in the Aporrectodea caliginosa earthworm. Barranger A; Klopp C; Le Bot B; Saramito G; Dupont L; Llopis S; Wiegand C; Binet F Environ Pollut; 2023 Feb; 319():120945. PubMed ID: 36572272 [TBL] [Abstract][Full Text] [Related]
15. The influence of soil organic matter content and substance lipophilicity on the toxicity of pesticides to the earthworm Eisenia andrei. van Hall BG; Sweeney CJ; Bottoms M; van Gestel CAM Sci Total Environ; 2024 Mar; 917():170206. PubMed ID: 38278271 [TBL] [Abstract][Full Text] [Related]
16. Differences in p,p'-DDE bioaccumulation from compost and soil by the plants Cucurbita pepo and Cucurbita maxima and the earthworms Eisenia fetida and Lumbricus terrestris. Peters R; Kelsey JW; White JC Environ Pollut; 2007 Jul; 148(2):539-45. PubMed ID: 17241722 [TBL] [Abstract][Full Text] [Related]
17. Earthworm-induced carboxylesterase activity in soil: Assessing the potential for detoxification and monitoring organophosphorus pesticides. Sanchez-Hernandez JC; Notario del Pino J; Domínguez J Ecotoxicol Environ Saf; 2015 Dec; 122():303-12. PubMed ID: 26300118 [TBL] [Abstract][Full Text] [Related]
18. Uptake kinetics of five hydrophobic organic pollutants in the earthworm Eisenia fetida in six different soils. Šmídová K; Hofman J J Hazard Mater; 2014 Feb; 267():175-82. PubMed ID: 24447858 [TBL] [Abstract][Full Text] [Related]
19. Bioaccumulation, distribution and elimination of lindane in Eisenia foetida: The aging effect. Miao J; Chen X; Xu T; Yin D; Hu X; Sheng GD Chemosphere; 2018 Jan; 190():350-357. PubMed ID: 29017112 [TBL] [Abstract][Full Text] [Related]
20. Differences in the bioaccumulation of selenium by two earthworm species (Pheretima guillemi and Eisenia fetida). Xiao K; Song M; Liu J; Chen H; Li D; Wang K Chemosphere; 2018 Jul; 202():560-566. PubMed ID: 29597172 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]