BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 38367721)

  • 21. Spatial and temporal variations reveal the response of zooplankton to cyanobacteria.
    Jia J; Shi W; Chen Q; Lauridsen TL
    Harmful Algae; 2017 Apr; 64():63-73. PubMed ID: 28427573
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A small omnivorous bitterling fish (Acheilognathus macropterus) facilitates dominance of cyanobacteria, rotifers and Limnodrilus in an outdoor mesocosm experiment.
    Yu J; Xia M; Kong M; He H; Guan B; Liu Z; Jeppesen E
    Environ Sci Pollut Res Int; 2020 Jul; 27(19):23862-23870. PubMed ID: 32301086
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Community stoichiometry in a changing world: combined effects of warming and eutrophication on phytoplankton dynamics.
    Domis LN; Van de Waal DB; Helmsing NR; Van Donk E; Mooij WM
    Ecology; 2014 Jun; 95(6):1485-95. PubMed ID: 25039214
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of phytoplankton blooms on fluxes and emissions of greenhouse gases in a eutrophic lake.
    Bartosiewicz M; Maranger R; Przytulska A; Laurion I
    Water Res; 2021 May; 196():116985. PubMed ID: 33735621
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Warming and oligotrophication cause shifts in freshwater phytoplankton communities.
    Verbeek L; Gall A; Hillebrand H; Striebel M
    Glob Chang Biol; 2018 Oct; 24(10):4532-4543. PubMed ID: 29856108
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Poor nutritional quality of primary producers and zooplankton driven by eutrophication is mitigated at upper trophic levels.
    Taipale SJ; Ventelä AM; Litmanen J; Anttila L
    Ecol Evol; 2022 Mar; 12(3):e8687. PubMed ID: 35342549
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dietary fatty acid transfer in pelagic food webs across trophic and climatic differences of Chinese lakes.
    Zhang Y; Feng K; Song D; Wang Q; Ye S; Liu J; Kainz MJ
    Sci Total Environ; 2024 Feb; 913():169562. PubMed ID: 38142998
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Response of cyanobacteria and phytoplankton abundance to warming, extreme rainfall events and nutrient enrichment.
    Richardson J; Feuchtmayr H; Miller C; Hunter PD; Maberly SC; Carvalho L
    Glob Chang Biol; 2019 Oct; 25(10):3365-3380. PubMed ID: 31095834
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Phytoplankton nutrient use and CO
    Kim D; Lim JH; Chun Y; Nayna OK; Begum MS; Park JH
    Water Res; 2021 Sep; 203():117510. PubMed ID: 34375930
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Climate warming and cyanobacteria blooms: Looks at their relationships from a new perspective.
    Yan X; Xu X; Wang M; Wang G; Wu S; Li Z; Sun H; Shi A; Yang Y
    Water Res; 2017 Nov; 125():449-457. PubMed ID: 28898702
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Linking cascading effects of fish predation and zooplankton grazing to reduced cyanobacterial biomass and toxin levels following biomanipulation.
    Ekvall MK; Urrutia-Cordero P; Hansson LA
    PLoS One; 2014; 9(11):e112956. PubMed ID: 25409309
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Zooplankton grazing pressure is insufficient for primary producer control under elevated warming and nutrient levels.
    Gusha MNC; Dalu T; Wasserman RJ; McQuaid CD
    Sci Total Environ; 2019 Feb; 651(Pt 1):410-418. PubMed ID: 30240923
    [TBL] [Abstract][Full Text] [Related]  

  • 33. CO₂ alters community composition and response to nutrient enrichment of freshwater phytoplankton.
    Low-Décarie E; Bell G; Fussmann GF
    Oecologia; 2015 Mar; 177(3):875-883. PubMed ID: 25430043
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Warming modifies trophic cascades and eutrophication in experimental freshwater communities.
    Kratina P; Greig HS; Thompson PL; Carvalho-Pereira TS; Shurin JB
    Ecology; 2012 Jun; 93(6):1421-30. PubMed ID: 22834382
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Food web efficiency differs between humic and clear water lake communities in response to nutrients and light.
    Faithfull CL; Mathisen P; Wenzel A; Bergström AK; Vrede T
    Oecologia; 2015 Mar; 177(3):823-835. PubMed ID: 25373827
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Responses of trophic structure and zooplankton community to salinity and temperature in Tibetan lakes: Implication for the effect of climate warming.
    Lin Q; Xu L; Hou J; Liu Z; Jeppesen E; Han BP
    Water Res; 2017 Nov; 124():618-629. PubMed ID: 28822342
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Extensive Carbon Contribution of Inundated Terrestrial Plants to Zooplankton Biomass in a Eutrophic Lake.
    Tang Y; Wang S; Jin X; Zhou D; Lin Q; Liu Z; Zhang X; Dumont HJ
    Microb Ecol; 2023 Jul; 86(1):163-173. PubMed ID: 35916938
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Nitrogen addition effect overrides warming effect on dissolved CO
    Yuan D; Xu YJ; Ma S; Le J; Zhang K; Miao R; Li S
    Water Res; 2023 Oct; 244():120437. PubMed ID: 37556989
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Phytoplankton growth and stoichiometric responses to warming, nutrient addition and grazing depend on lake productivity and cell size.
    Schulhof MA; Shurin JB; Declerck SAJ; Van de Waal DB
    Glob Chang Biol; 2019 Aug; 25(8):2751-2762. PubMed ID: 31004556
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Can top-down effects of planktivorous fish removal be used to mitigate cyanobacterial blooms in large subtropical highland lakes?
    Yin C; He W; Guo L; Gong L; Yang Y; Yang J; Ni L; Chen Y; Jeppesen E
    Water Res; 2022 Jun; 218():118483. PubMed ID: 35489149
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.