These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 38367926)
1. Understanding the effect of heating rate on hydrothermal liquefaction: A comprehensive investigation from model compounds to a real food waste. Tito E; Marcolongo CA; Pipitone G; Monteverde AHA; Bensaid S; Pirone R Bioresour Technol; 2024 Mar; 396():130446. PubMed ID: 38367926 [TBL] [Abstract][Full Text] [Related]
2. Elemental migration and transformation during hydrothermal liquefaction of biomass. Lu J; Watson J; Liu Z; Wu Y J Hazard Mater; 2022 Feb; 423(Pt A):126961. PubMed ID: 34461542 [TBL] [Abstract][Full Text] [Related]
3. Biocrude oil production via hydrothermal liquefaction of food waste in a simplified high-throughput reactor. Saengsuriwong R; Onsree T; Phromphithak S; Tippayawong N Bioresour Technol; 2021 Dec; 341():125750. PubMed ID: 34416661 [TBL] [Abstract][Full Text] [Related]
4. Research progress and hot spots of hydrothermal liquefaction for bio-oil production based on bibliometric analysis. Yang J; Hong C; Xing Y; Zheng Z; Li Z; Zhao X; Qi C Environ Sci Pollut Res Int; 2021 Feb; 28(7):7621-7635. PubMed ID: 33398733 [TBL] [Abstract][Full Text] [Related]
5. A quantitative kinetic model for the fast and isothermal hydrothermal liquefaction of Nannochloropsis sp. Hietala DC; Faeth JL; Savage PE Bioresour Technol; 2016 Aug; 214():102-111. PubMed ID: 27128195 [TBL] [Abstract][Full Text] [Related]
6. Experimental and model enhancement of food waste hydrothermal liquefaction with combined effects of biochemical composition and reaction conditions. Aierzhati A; Stablein MJ; Wu NE; Kuo CT; Si B; Kang X; Zhang Y Bioresour Technol; 2019 Jul; 284():139-147. PubMed ID: 30927651 [TBL] [Abstract][Full Text] [Related]
7. Effects of processing conditions on biocrude yields from fast hydrothermal liquefaction of microalgae. Faeth JL; Savage PE Bioresour Technol; 2016 Apr; 206():290-293. PubMed ID: 26879204 [TBL] [Abstract][Full Text] [Related]
8. Effect of temperature, water loading, and Ru/C catalyst on water-insoluble and water-soluble biocrude fractions from hydrothermal liquefaction of algae. Xu D; Savage PE Bioresour Technol; 2017 Sep; 239():1-6. PubMed ID: 28500883 [TBL] [Abstract][Full Text] [Related]
9. Machine learning prediction of biocrude yields and higher heating values from hydrothermal liquefaction of wet biomass and wastes. Katongtung T; Onsree T; Tippayawong N Bioresour Technol; 2022 Jan; 344(Pt B):126278. PubMed ID: 34752893 [TBL] [Abstract][Full Text] [Related]
10. Conversion of tobacco processing waste to biocrude oil via hydrothermal liquefaction in a multiple batch reactor. Saengsuriwong R; Onsree T; Phromphithak S; Tippayawong N Clean Technol Environ Policy; 2023; 25(2):397-407. PubMed ID: 34149340 [TBL] [Abstract][Full Text] [Related]
11. Hydrothermal liquefaction of composite household waste to biocrude: the effect of liquefaction solvents on product yield and quality. Vaishnavi M; Sathishkumar K; Gopinath KP Environ Sci Pollut Res Int; 2024 Jun; 31(27):39760-39773. PubMed ID: 38833053 [TBL] [Abstract][Full Text] [Related]
12. Hydrothermal co-liquefaction of microalgae, sugarcane bagasse, brewer's spent grain, and sludge from a paper recycling mill: Modeling and evaluation of biocrude and biochar yield. Bassoli SC; Sanson AL; Naves FL; Amaral MS J Environ Manage; 2024 Apr; 356():120626. PubMed ID: 38518491 [TBL] [Abstract][Full Text] [Related]
13. Hydrothermal liquefaction of Cyanidioschyzon merolae and the influence of catalysts on products. Muppaneni T; Reddy HK; Selvaratnam T; Dandamudi KPR; Dungan B; Nirmalakhandan N; Schaub T; Omar Holguin F; Voorhies W; Lammers P; Deng S Bioresour Technol; 2017 Jan; 223():91-97. PubMed ID: 27788432 [TBL] [Abstract][Full Text] [Related]
14. Hydrothermal Liquefaction of Organic Waste Model Compounds: The Effect of the Heating Rate on Biocrude Yield and Quality from Mixtures of Cellulose-Albumin-Sunflower Oil. Amadei A; Bracciale MP; Damizia M; De Filippis P; de Caprariis B; Ferrasse JH; Scarsella M ACS Omega; 2024 Oct; 9(40):41194-41207. PubMed ID: 39398135 [TBL] [Abstract][Full Text] [Related]
15. Modeling the effects of microalga biochemical content on the kinetics and biocrude yields from hydrothermal liquefaction. Sheehan JD; Savage PE Bioresour Technol; 2017 Sep; 239():144-150. PubMed ID: 28521223 [TBL] [Abstract][Full Text] [Related]
16. Effect of operating conditions on yield and quality of biocrude during hydrothermal liquefaction of halophytic microalga Tetraselmis sp. Eboibi BE; Lewis DM; Ashman PJ; Chinnasamy S Bioresour Technol; 2014 Oct; 170():20-29. PubMed ID: 25118149 [TBL] [Abstract][Full Text] [Related]
17. Single- and two-step hydrothermal liquefaction of microalgae in a semi-continuous reactor: Effect of the operating parameters. Prapaiwatcharapan K; Sunphorka S; Kuchonthara P; Kangvansaichol K; Hinchiranan N Bioresour Technol; 2015 Sep; 191():426-32. PubMed ID: 25913031 [TBL] [Abstract][Full Text] [Related]
18. Hydrothermal liquefaction (HTL) of animal by-products: Influence of operating conditions. León M; Marcilla AF; García ÁN Waste Manag; 2019 Nov; 99():49-59. PubMed ID: 31472440 [TBL] [Abstract][Full Text] [Related]
19. Conversion efficiency and oil quality of low-lipid high-protein and high-lipid low-protein microalgae via hydrothermal liquefaction. Li H; Liu Z; Zhang Y; Li B; Lu H; Duan N; Liu M; Zhu Z; Si B Bioresour Technol; 2014 Feb; 154():322-9. PubMed ID: 24413449 [TBL] [Abstract][Full Text] [Related]
20. A general kinetic model for the hydrothermal liquefaction of microalgae. Valdez PJ; Tocco VJ; Savage PE Bioresour Technol; 2014 Jul; 163():123-7. PubMed ID: 24793402 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]