These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 38368358)

  • 21. Analysis of Movement, Orientation and Rotation-Based Sensing for Phone Placement Recognition.
    Incel OD
    Sensors (Basel); 2015 Oct; 15(10):25474-506. PubMed ID: 26445046
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Enhanced Human Activity Recognition Based on Smartphone Sensor Data Using Hybrid Feature Selection Model.
    Ahmed N; Rafiq JI; Islam MR
    Sensors (Basel); 2020 Jan; 20(1):. PubMed ID: 31935943
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Machine learning-based motor assessment of Parkinson's disease using postural sway, gait and lifestyle features on crowdsourced smartphone data.
    Abujrida H; Agu E; Pahlavan K
    Biomed Phys Eng Express; 2020 Mar; 6(3):035005. PubMed ID: 33438650
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Walking Recognition in Mobile Devices.
    Casado FE; Rodríguez G; Iglesias R; Regueiro CV; Barro S; Canedo-Rodríguez A
    Sensors (Basel); 2020 Feb; 20(4):. PubMed ID: 32098082
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Activity Recognition Invariant to Sensor Orientation with Wearable Motion Sensors.
    Yurtman A; Barshan B
    Sensors (Basel); 2017 Aug; 17(8):. PubMed ID: 28792481
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Single Accelerometer to Recognize Human Activities Using Neural Networks.
    Vakacherla SS; Kantharaju P; Mevada M; Kim M
    J Biomech Eng; 2023 Jun; 145(6):. PubMed ID: 36695756
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Significant Features for Human Activity Recognition Using Tri-Axial Accelerometers.
    Bennasar M; Price BA; Gooch D; Bandara AK; Nuseibeh B
    Sensors (Basel); 2022 Oct; 22(19):. PubMed ID: 36236586
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Evaluation of accelerometer based multi-sensor versus single-sensor activity recognition systems.
    Gao L; Bourke AK; Nelson J
    Med Eng Phys; 2014 Jun; 36(6):779-85. PubMed ID: 24636448
    [TBL] [Abstract][Full Text] [Related]  

  • 29. An Activity-Aware Sampling Scheme for Mobile Phones in Activity Recognition.
    Chen Z; Chen J; Huang X
    Sensors (Basel); 2020 Apr; 20(8):. PubMed ID: 32294935
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Machine learning algorithms can classify outdoor terrain types during running using accelerometry data.
    Dixon PC; Schütte KH; Vanwanseele B; Jacobs JV; Dennerlein JT; Schiffman JM; Fournier PA; Hu B
    Gait Posture; 2019 Oct; 74():176-181. PubMed ID: 31539798
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Feature selection for wearable smartphone-based human activity recognition with able bodied, elderly, and stroke patients.
    Capela NA; Lemaire ED; Baddour N
    PLoS One; 2015; 10(4):e0124414. PubMed ID: 25885272
    [TBL] [Abstract][Full Text] [Related]  

  • 32. HIT HAR: Human Image Threshing Machine for Human Activity Recognition Using Deep Learning Models.
    Poulose A; Kim JH; Han DS
    Comput Intell Neurosci; 2022; 2022():1808990. PubMed ID: 36248917
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Accelerometry-based Recognition of the Placement Sites of a Wearable Sensor.
    Mannini A; Sabatini AM; Intille SS
    Pervasive Mob Comput; 2015 Aug; 21():62-74. PubMed ID: 26213528
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Iss2Image: A Novel Signal-Encoding Technique for CNN-Based Human Activity Recognition.
    Hur T; Bang J; Huynh-The T; Lee J; Kim JI; Lee S
    Sensors (Basel); 2018 Nov; 18(11):. PubMed ID: 30428600
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Sensor Type, Axis, and Position-Based Fusion and Feature Selection for Multimodal Human Daily Activity Recognition in Wearable Body Sensor Networks.
    Badawi AA; Al-Kabbany A; Shaban HA
    J Healthc Eng; 2020; 2020():7914649. PubMed ID: 32587667
    [TBL] [Abstract][Full Text] [Related]  

  • 36. IMU-to-Segment Assignment and Orientation Alignment for the Lower Body Using Deep Learning.
    Zimmermann T; Taetz B; Bleser G
    Sensors (Basel); 2018 Jan; 18(1):. PubMed ID: 29351262
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Accuracy Improvement of Vehicle Recognition by Using Smart Device Sensors.
    Pias TS; Eisenberg D; Fresneda Fernandez J
    Sensors (Basel); 2022 Jun; 22(12):. PubMed ID: 35746179
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A Dual-Accelerometer System for Classifying Physical Activity in Children and Adults.
    Stewart T; Narayanan A; Hedayatrad L; Neville J; Mackay L; Duncan S
    Med Sci Sports Exerc; 2018 Dec; 50(12):2595-2602. PubMed ID: 30048411
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Activity recognition with smartphone support.
    Guiry JJ; van de Ven P; Nelson J; Warmerdam L; Riper H
    Med Eng Phys; 2014 Jun; 36(6):670-5. PubMed ID: 24641812
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Learning the Orientation of a Loosely-Fixed Wearable IMU Relative to the Body Improves the Recognition Rate of Human Postures and Activities.
    Del Rosario MB; Lovell NH; Redmond SJ
    Sensors (Basel); 2019 Jun; 19(13):. PubMed ID: 31248016
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.