These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 38368434)

  • 1. Bio-based anode material production for lithium-ion batteries through catalytic graphitization of biochar: the deployment of hybrid catalysts.
    Shi Z; Jin Y; Han T; Yang H; Gond R; Subasi Y; Asfaw HD; Younesi R; Jönsson PG; Yang W
    Sci Rep; 2024 Feb; 14(1):3966. PubMed ID: 38368434
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ecofriendly Synthesis of Waste-Tire-Derived Graphite Nanoflakes by a Low-Temperature Electrochemical Graphitization Process toward a Silicon-Based Anode with a High-Performance Lithium-Ion Battery.
    Wu SC; Lin CW; Chang PC; Yang TY; Tang SY; Wu DC; Liao CR; Wang YC; Lee L; Yu YJ; Chueh YL
    ACS Appl Mater Interfaces; 2023 Mar; 15(12):15279-15289. PubMed ID: 36921119
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nickel-Embedded Carbon Materials Derived from Wheat Flour for Li-Ion Storage.
    Ding W; Wu X; Li Y; Wang S; Zhuo S
    Materials (Basel); 2020 Oct; 13(20):. PubMed ID: 33081207
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sustainable conversion of biomass to rationally designed lithium-ion battery graphite.
    Banek NA; McKenzie KR; Abele DT; Wagner MJ
    Sci Rep; 2022 May; 12(1):8080. PubMed ID: 35577817
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microwave-Assisted Coal-Derived Few-Layer Graphene as an Anode Material for Lithium-Ion Batteries.
    Islam F; Wang J; Tahmasebi A; Wang R; Moghtaderi B; Yu J
    Materials (Basel); 2021 Oct; 14(21):. PubMed ID: 34772001
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Low-Cost Transformation of Biomass-Derived Carbon to High-Performing Nano-graphite via Low-Temperature Electrochemical Graphitization.
    Thapaliya BP; Luo H; Halstenberg P; Meyer HM; Dunlap JR; Dai S
    ACS Appl Mater Interfaces; 2021 Jan; 13(3):4393-4401. PubMed ID: 33433992
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of graphitization degree of carbonaceous material on the electrochemical performance for aluminum-ion batteries.
    Wang J; Tu J; Lei H; Zhu H
    RSC Adv; 2019 Nov; 9(67):38990-38997. PubMed ID: 35540677
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Facile Synthesis of Sustainable Activated Biochars with Different Pore Structures as Efficient Additive-Carbon-Free Anodes for Lithium- and Sodium-Ion Batteries.
    Simões Dos Reis G; Mayandi Subramaniyam C; Cárdenas AD; Larsson SH; Thyrel M; Lassi U; García-Alvarado F
    ACS Omega; 2022 Nov; 7(46):42570-42581. PubMed ID: 36440116
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Green Synergy Conversion of Waste Graphite in Spent Lithium-Ion Batteries to GO and High-Performance EG Anode Material.
    Yang S; Yang G; Lan M; Zou J; Zhang X; Lai F; Xiang D; Wang H; Liu K; Li Q
    Small; 2024 May; 20(22):e2305785. PubMed ID: 38143289
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electroless plating of a Sn-Ni/graphite sheet composite with improved cyclability as an anode material for lithium ion batteries.
    Yang G; Yan Z; Cui L; Qu Y; Li Q; Li X; Wang Y; Wang H
    RSC Adv; 2018 Apr; 8(28):15427-15435. PubMed ID: 35539458
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Novel and Sustainable Approach to Enhance the Li-Ion Storage Capability of Recycled Graphite Anode from Spent Lithium-Ion Batteries.
    Bhar M; Bhattacharjee U; Sarma D; Krishnamurthy S; Yalamanchili K; Mahata A; Martha SK
    ACS Appl Mater Interfaces; 2023 Jun; 15(22):26606-26618. PubMed ID: 37226804
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Three-Dimensional Flower-like MoS
    Lee YA; Jang KY; Yoo J; Yim K; Jung W; Jung KN; Yoo CY; Cho Y; Lee J; Ryu MH; Shin H; Lee K; Yoon H
    Materials (Basel); 2023 May; 16(11):. PubMed ID: 37297150
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bimetallic CuSbSe
    Hui D; Chen X; Bian X; He C; Yao S; Chen G; Du F
    Chemistry; 2023 Jan; 29(6):e202203044. PubMed ID: 36305371
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mo-Doped SnO
    Feng Y; Wu K; Sun Y; Guo Z; Ke J; Huang X; Bai C; Dong H; Xiong D; He M
    Langmuir; 2020 Aug; 36(31):9276-9283. PubMed ID: 32674578
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selective Phosphorization Boosting High-Performance NiO/Ni
    Yan J; Chang XB; Ma XK; Wang H; Zhang Y; Gao KZ; Yoshikawa H; Wang LZ
    Materials (Basel); 2020 Dec; 14(1):. PubMed ID: 33374649
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SiC Nanofibers as Long-Life Lithium-Ion Battery Anode Materials.
    Sun X; Shao C; Zhang F; Li Y; Wu QH; Yang Y
    Front Chem; 2018; 6():166. PubMed ID: 29868567
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design and Performance of a New Zn
    Chchiyai Z; El Ghali O; Lahmar A; Alami J; Manoun B
    Molecules; 2023 Oct; 28(20):. PubMed ID: 37894488
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biomass-Based Silicon and Carbon for Lithium-Ion Battery Anodes.
    Muraleedharan Pillai M; Kalidas N; Zhao X; Lehto VP
    Front Chem; 2022; 10():882081. PubMed ID: 35601553
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preparation and formation mechanism of biomass-based graphite carbon catalyzed by iron nitrate under a low-temperature condition.
    Sun Z; Yao D; Cao C; Zhang Z; Zhang L; Zhu H; Yuan Q; Yi B
    J Environ Manage; 2022 Sep; 318():115555. PubMed ID: 35738129
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Turning an environmental problem into an opportunity: potential use of biochar derived from a harmful marine biomass named Cladophora glomerata as anode electrode for Li-ion batteries.
    Salimi P; Javadian S; Norouzi O; Gharibi H
    Environ Sci Pollut Res Int; 2017 Dec; 24(36):27974-27984. PubMed ID: 28990143
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.