These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
236 related articles for article (PubMed ID: 38368575)
1. scEM: A New Ensemble Framework for Predicting Cell Type Composition Based on scRNA-Seq Data. Cai X; Zhang W; Zheng X; Xu Y; Li Y Interdiscip Sci; 2024 Jun; 16(2):304-317. PubMed ID: 38368575 [TBL] [Abstract][Full Text] [Related]
2. nsDCC: dual-level contrastive clustering with nonuniform sampling for scRNA-seq data analysis. Wang L; Li W; Zhou F; Yu K; Feng C; Zhao D Brief Bioinform; 2024 Sep; 25(6):. PubMed ID: 39327063 [TBL] [Abstract][Full Text] [Related]
4. Combining Global-Constrained Concept Factorization and a Regularized Gaussian Graphical Model for Clustering Single-Cell RNA-seq Data. Xu Y; Zhang W; Zheng X; Cai X Interdiscip Sci; 2024 Mar; 16(1):1-15. PubMed ID: 37815679 [TBL] [Abstract][Full Text] [Related]
5. Multi-View Clustering With Graph Learning for scRNA-Seq Data. Wu W; Zhang W; Hou W; Ma X IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(6):3535-3546. PubMed ID: 37486829 [TBL] [Abstract][Full Text] [Related]
6. A Gene Rank Based Approach for Single Cell Similarity Assessment and Clustering. Xu Y; Li HD; Pan Y; Luo F; Wu FX; Wang J IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(2):431-442. PubMed ID: 31369384 [TBL] [Abstract][Full Text] [Related]
7. Clustering scRNA-seq data with the cross-view collaborative information fusion strategy. Lou Z; Wei X; Hu Y; Hu S; Wu Y; Tian Z Brief Bioinform; 2024 Sep; 25(6):. PubMed ID: 39402696 [TBL] [Abstract][Full Text] [Related]
8. scZAG: Integrating ZINB-Based Autoencoder with Adaptive Data Augmentation Graph Contrastive Learning for scRNA-seq Clustering. Zhang T; Ren J; Li L; Wu Z; Zhang Z; Dong G; Wang G Int J Mol Sci; 2024 May; 25(11):. PubMed ID: 38892162 [TBL] [Abstract][Full Text] [Related]
9. scBGEDA: deep single-cell clustering analysis via a dual denoising autoencoder with bipartite graph ensemble clustering. Wang Y; Yu Z; Li S; Bian C; Liang Y; Wong KC; Li X Bioinformatics; 2023 Feb; 39(2):. PubMed ID: 36734596 [TBL] [Abstract][Full Text] [Related]
10. A Comprehensive Survey of Statistical Approaches for Differential Expression Analysis in Single-Cell RNA Sequencing Studies. Das S; Rai A; Merchant ML; Cave MC; Rai SN Genes (Basel); 2021 Dec; 12(12):. PubMed ID: 34946896 [TBL] [Abstract][Full Text] [Related]
12. Attention-based deep clustering method for scRNA-seq cell type identification. Li S; Guo H; Zhang S; Li Y; Li M PLoS Comput Biol; 2023 Nov; 19(11):e1011641. PubMed ID: 37948464 [TBL] [Abstract][Full Text] [Related]
13. XgCPred: Cell type classification using XGBoost-CNN integration and exploiting gene expression imaging in single-cell RNAseq data. Abu-Doleh A; Al Fahoum A Comput Biol Med; 2024 Oct; 181():109066. PubMed ID: 39180857 [TBL] [Abstract][Full Text] [Related]
14. Single-cell RNA-seq data clustering: A survey with performance comparison study. Li R; Guan J; Zhou S J Bioinform Comput Biol; 2020 Aug; 18(4):2040005. PubMed ID: 32795134 [TBL] [Abstract][Full Text] [Related]
15. Graph-Regularized Non-Negative Matrix Factorization for Single-Cell Clustering in scRNA-Seq Data. Jiang H; Wang MN; Huang YA; Huang Y IEEE J Biomed Health Inform; 2024 Aug; 28(8):4986-4994. PubMed ID: 38787664 [TBL] [Abstract][Full Text] [Related]
16. scTPC: a novel semisupervised deep clustering model for scRNA-seq data. Qiu Y; Yang L; Jiang H; Zou Q Bioinformatics; 2024 May; 40(5):. PubMed ID: 38684178 [TBL] [Abstract][Full Text] [Related]
17. Autoencoder-based cluster ensembles for single-cell RNA-seq data analysis. Geddes TA; Kim T; Nan L; Burchfield JG; Yang JYH; Tao D; Yang P BMC Bioinformatics; 2019 Dec; 20(Suppl 19):660. PubMed ID: 31870278 [TBL] [Abstract][Full Text] [Related]
18. scHFC: a hybrid fuzzy clustering method for single-cell RNA-seq data optimized by natural computation. Wang J; Xia J; Tan D; Lin R; Su Y; Zheng CH Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35136924 [TBL] [Abstract][Full Text] [Related]
19. Assessing parameter efficient methods for pre-trained language model in annotating scRNA-seq data. Xia Y; Liu Y; Li T; He S; Chang H; Wang Y; Zhang Y; Ge W Methods; 2024 Aug; 228():12-21. PubMed ID: 38759908 [TBL] [Abstract][Full Text] [Related]
20. Collaborative Structure-Preserved Missing Data Imputation for Single-Cell RNA-Seq Clustering. Gao H; Shen W; Li R; Liu C; Wu S IEEE/ACM Trans Comput Biol Bioinform; 2024; 21(5):1480-1491. PubMed ID: 38776196 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]