These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 38368986)

  • 1. Preparation of environmentally friendly, high strength, adhesion and stability hydrogel based on lignocellulose framework.
    Meng X; Qi L; Xia C; Jin X; Zhou J; Dong A; Li J; Yang R
    Int J Biol Macromol; 2024 Apr; 263(Pt 2):130158. PubMed ID: 38368986
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Freeze-resistant, rapidly polymerizable, ionic conductive hydrogel induced by Deep Eutectic Solvent (DES) after lignocellulose pretreatment for flexible sensors.
    Yan Y; He C; Zhang L; Dong H; Zhang X
    Int J Biol Macromol; 2023 Jan; 224():143-155. PubMed ID: 36257360
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cellulose nanocrystalline hydrogel based on a choline chloride deep eutectic solvent as wearable strain sensor for human motion.
    Wang H; Li J; Yu X; Yan G; Tang X; Sun Y; Zeng X; Lin L
    Carbohydr Polym; 2021 Mar; 255():117443. PubMed ID: 33436232
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-Strength, High-Swelling-Resistant, High-Sensitivity Hydrogel Sensor Prepared with Wood That Retains Lignin.
    Meng X; Zhou J; Jin X; Xia C; Ma S; Hong S; Aladejana JT; Dong A; Luo Y; Li J; Zhan X; Yang R
    Biomacromolecules; 2024 Mar; 25(3):1696-1708. PubMed ID: 38381837
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrication of lignocellulose/liquid metal-based conductive eutectic hydrogel composite for strain sensors.
    Zhao D; Wang L; Fang K; Luo J; Zhou X; Jiang K
    Int J Biol Macromol; 2024 Jul; 273(Pt 1):133013. PubMed ID: 38852728
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication of versatile lignocellulose nanofibril/polymerizable deep eutectic solvent hydrogels with anti-swelling, adhesive and low-temperature resistant properties via a one-pot strategy.
    Fu L; Fang Z; Chen H; Wang A; Sun C; Zhai Y; Liu W; Qiao Z; Wen Y
    Int J Biol Macromol; 2024 Jan; 256(Pt 1):128289. PubMed ID: 38000570
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stretchable, freezing-tolerant conductive hydrogel for wearable electronics reinforced by cellulose nanocrystals toward multiple hydrogen bonding.
    Wang H; Li Z; Zuo M; Zeng X; Tang X; Sun Y; Lin L
    Carbohydr Polym; 2022 Mar; 280():119018. PubMed ID: 35027123
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lignin-silver triggered multifunctional conductive hydrogels for skinlike sensor applications.
    Hao Y; Wang C; Jiang W; Yoo CG; Ji X; Yang G; Chen J; Lyu G
    Int J Biol Macromol; 2022 Nov; 221():1282-1293. PubMed ID: 36113594
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Starch as a reinforcement agent for poly(ionic liquid) hydrogels from deep eutectic solvent via frontal polymerization.
    Chen Y; Li S; Yan S
    Carbohydr Polym; 2021 Jul; 263():117996. PubMed ID: 33858582
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sodium hyaluronate hydrogel for wound healing and human health monitoring based on deep eutectic solvent.
    Huang T; Zhang Y; Zhao L; Ren Y; Wang K; Zhang N; Zhang X; Wang J; Tu Q
    Int J Biol Macromol; 2024 Feb; 257(Pt 2):128801. PubMed ID: 38101662
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Flexible conductive hydrogel fabricated with polyvinyl alcohol, carboxymethyl chitosan, cellulose nanofibrils, and lignin-based carbon applied as strain and pressure sensor.
    Li M; Tu Q; Long X; Zhang Q; Jiang H; Chen C; Wang S; Min D
    Int J Biol Macromol; 2021 Jan; 166():1526-1534. PubMed ID: 33181212
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design of asymmetric-adhesion lignin reinforced hydrogels with anti-interference for strain sensing and moist air induced electricity generator.
    Fu C; Lin J; Tang Z; Chen L; Huang F; Kong F; Ni Y; Huang L
    Int J Biol Macromol; 2022 Mar; 201():104-110. PubMed ID: 34998868
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-Strength Double-Network Conductive Hydrogels Based on Polyvinyl Alcohol and Polymerizable Deep Eutectic Solvent.
    Zhang Y; Jiang L; Zhang H; Li Q; Ma N; Zhang X; Ma L
    Molecules; 2023 Jun; 28(12):. PubMed ID: 37375245
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A facile strategy to fabricate lignocellulose-based slow-release fertilizers via a high-performance treatment of rice straw using deep eutectic solvents.
    Wu K; Shi R; Du C; Ma F; Gan F
    Int J Biol Macromol; 2024 Feb; 257(Pt 1):128582. PubMed ID: 38056751
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Compressible, anti-freezing, and ionic conductive cellulose/polyacrylic acid composite hydrogel prepared via AlCl
    Tian Y; Zhang L; Li X; Yan M; Wang Y; Ma J; Wang Z
    Int J Biol Macromol; 2023 Dec; 253(Pt 1):126550. PubMed ID: 37657569
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polymerizable deep eutectic solvent treated lignocellulose: Green strategy for synergetic production of tough strain sensing elastomers and nanocellulose.
    Wu X; Qi Z; Li X; Wang H; Yang K; Cai H; Han X
    Int J Biol Macromol; 2024 Apr; 264(Pt 2):130670. PubMed ID: 38453108
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design of Fe
    Mondal AK; Xu D; Wu S; Zou Q; Huang F; Ni Y
    Biomacromolecules; 2022 Mar; 23(3):766-778. PubMed ID: 35049296
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lignin reinforced hydrogels with multi-functional sensing and moist-electric generating applications.
    Zhang Y; MohebbiPour A; Mao J; Mao J; Ni Y
    Int J Biol Macromol; 2021 Dec; 193(Pt A):941-947. PubMed ID: 34743988
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acidic deep eutectic solvent assisted mechanochemical delignification of lignocellulosic biomass at room temperature.
    Sun X; Zhou Z; Tian D; Zhao J; Zhang J; Deng P; Zou H; Lu C
    Int J Biol Macromol; 2023 Apr; 234():123593. PubMed ID: 36773862
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Skin-adhesive lignin-grafted-polyacrylamide/hydroxypropyl cellulose hydrogel sensor for real-time cervical spine bending monitoring in human-machine Interface.
    Chen Y; Lv X; Wang Y; Shi J; Luo S; Fan J; Sun B; Liu Y; Fan Q
    Int J Biol Macromol; 2023 Aug; 247():125833. PubMed ID: 37453629
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.