These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 38369154)
1. Managing the remediation strategy of contaminated megasites using field-scale calibration of geo-electrical imaging with chemical monitoring. Lévy L; Bording TS; Fiandaca G; Christiansen AV; Madsen LM; Bennedsen LF; Jørgensen TH; MacKinnon L; Christensen JF Sci Total Environ; 2024 Apr; 920():171013. PubMed ID: 38369154 [TBL] [Abstract][Full Text] [Related]
2. Understanding the dynamics of enhanced light non-aqueous phase liquids (LNAPL) remediation at a polluted site: Insights from hydrogeophysical findings and chemical evidence. Ciampi P; Cassiani G; Deidda GP; Esposito C; Rizzetto P; Pizzi A; Papini MP Sci Total Environ; 2024 Jul; 932():172934. PubMed ID: 38703835 [TBL] [Abstract][Full Text] [Related]
3. Monitoring of in-situ chemical oxidation for remediation of diesel-contaminated soil with electrical resistivity tomography. Xia T; Ma M; Huisman JA; Zheng C; Gao C; Mao D J Contam Hydrol; 2023 May; 256():104170. PubMed ID: 36924705 [TBL] [Abstract][Full Text] [Related]
4. Time-Lapse Electrical Geophysical Monitoring of Amendment-Based Biostimulation. Johnson TC; Versteeg RJ; Day-Lewis FD; Major W; Lane JW Ground Water; 2015; 53(6):920-32. PubMed ID: 25457440 [TBL] [Abstract][Full Text] [Related]
5. Post-remediation geophysical assessment: Investigating long-term electrical geophysical signatures resulting from bioremediation at a chlorinated solvent contaminated site. Kessouri P; Johnson T; Day-Lewis FD; Wang C; Ntarlagiannis D; Slater LD J Environ Manage; 2022 Jan; 302(Pt A):113944. PubMed ID: 34715616 [TBL] [Abstract][Full Text] [Related]
6. Evaluating four-dimensional time-lapse electrical resistivity tomography for monitoring DNAPL source zone remediation. Power C; Gerhard JI; Karaoulis M; Tsourlos P; Giannopoulos A J Contam Hydrol; 2014 Jul; 162-163():27-46. PubMed ID: 24854903 [TBL] [Abstract][Full Text] [Related]
7. In situ stabilization of NAPL contaminant source-zones as a remediation technique to reduce mass discharge and flux to groundwater. Mateas DJ; Tick GR; Carroll KC J Contam Hydrol; 2017 Sep; 204():40-56. PubMed ID: 28780996 [TBL] [Abstract][Full Text] [Related]
8. Integrated geophysical and geochemical methods for environmental assessment of subsurface hydrocarbon contamination. Eze SU; Ogagarue DO; Nnorom SL; Osung WE; Ibitoye TA Environ Monit Assess; 2021 Jun; 193(7):451. PubMed ID: 34181125 [TBL] [Abstract][Full Text] [Related]
9. Experimental upscaling analyses for a surfactant-enhanced in-situ chemical oxidation (S-ISCO) remediation design. Herzog BM; Kleinknecht SM; Haslauer CP; Klaas N J Contam Hydrol; 2023 Sep; 258():104230. PubMed ID: 37481897 [TBL] [Abstract][Full Text] [Related]
10. Real-time monitoring of in situ chemical oxidation (ISCO) of dissolved TCE by integrating electrical resistivity tomography and reactive transport modeling. Han Z; Kang X; Singha K; Wu J; Shi X Water Res; 2024 Mar; 252():121195. PubMed ID: 38290236 [TBL] [Abstract][Full Text] [Related]
11. Delineation of LNAPL plumes in a clay-rich site in Gyeongsangnam-do Province, South Korea: integration of geophysical survey data with borehole data and soil sampling information. Kim B; Joung IS; Yu H; Jeong J; Song SY; Son JS; Yu Y; Shin J; Jo HY; Kwon MJ; Nam MJ Environ Monit Assess; 2023 Dec; 196(1):47. PubMed ID: 38105289 [TBL] [Abstract][Full Text] [Related]
12. Imaging Pathways in Fractured Rock Using Three-Dimensional Electrical Resistivity Tomography. Robinson J; Slater L; Johnson T; Shapiro A; Tiedeman C; Ntarlagiannis D; Johnson C; Day-Lewis F; Lacombe P; Imbrigiotta T; Lane J Ground Water; 2016 Mar; 54(2):186-201. PubMed ID: 26172032 [TBL] [Abstract][Full Text] [Related]
13. A field-scale remediation of residual light non-aqueous phase liquid (LNAPL): chemical enhancers for pump and treat. Ciampi P; Esposito C; Cassiani G; Deidda GP; Rizzetto P; Papini MP Environ Sci Pollut Res Int; 2021 Jul; 28(26):35286-35296. PubMed ID: 34085199 [TBL] [Abstract][Full Text] [Related]
14. Hydrogeophysical imaging of deposit heterogeneity and groundwater chemistry changes during DNAPL source zone bioremediation. Chambers JE; Wilkinson PB; Wealthall GP; Loke MH; Dearden R; Wilson R; Allen D; Ogilvy RD J Contam Hydrol; 2010 Oct; 118(1-2):43-61. PubMed ID: 20728959 [TBL] [Abstract][Full Text] [Related]
15. Persulfate-based ISCO for field-scale remediation of NAPL-contaminated soil: Column experiments and modeling. Bolourani G; Ioannidis MA; Craig JR; Thomson NR J Hazard Mater; 2023 May; 449():131000. PubMed ID: 36821897 [TBL] [Abstract][Full Text] [Related]
16. Geoelectrical monitoring of simulated subsurface leakage to support high-hazard nuclear decommissioning at the Sellafield Site, UK. Kuras O; Wilkinson PB; Meldrum PI; Oxby LS; Uhlemann S; Chambers JE; Binley A; Graham J; Smith NT; Atherton N Sci Total Environ; 2016 Oct; 566-567():350-359. PubMed ID: 27228305 [TBL] [Abstract][Full Text] [Related]
18. Mapping and monitoring dense non-aqueous phase liquid source zone by fused surface and cross-borehole electrical resistivity tomography. Meng F; Wang J; Zhao Y J Hazard Mater; 2024 Oct; 478():135618. PubMed ID: 39181005 [TBL] [Abstract][Full Text] [Related]
19. Long-term ERT monitoring of biogeochemical changes of an aged hydrocarbon contamination. Caterina D; Flores Orozco A; Nguyen F J Contam Hydrol; 2017 Jun; 201():19-29. PubMed ID: 28442237 [TBL] [Abstract][Full Text] [Related]
20. Delineation of contaminant plume for an inorganic contaminated site using electrical resistivity tomography: comparison with direct-push technique. Liao Q; Deng Y; Shi X; Sun Y; Duan W; Wu J Environ Monit Assess; 2018 Mar; 190(4):187. PubMed ID: 29502209 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]