BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 38369671)

  • 1. Time-kill kinetic of nano-ZnO-loaded nanoliposomes against Aspergillus niger and Botrytis cinerea.
    Souri P; Emamifar A; Davati N
    Braz J Microbiol; 2024 Jun; 55(2):1669-1678. PubMed ID: 38369671
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Antifungal activity of zinc oxide nanoparticles against Botrytis cinerea and Penicillium expansum.
    He L; Liu Y; Mustapha A; Lin M
    Microbiol Res; 2011 Mar; 166(3):207-15. PubMed ID: 20630731
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Morphology and antifungal effect of nano-ZnO and nano-Pd-doped nano-ZnO against Aspergillus and Candida.
    Gondal MA; Alzahrani AJ; Randhawa MA; Siddiqui MN
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2012; 47(10):1413-8. PubMed ID: 22571529
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Growth-inhibitory activity of phenolic compounds applied in an emulsifiable concentrate - ferulic acid as a natural pesticide against Botrytis cinerea.
    Patzke H; Schieber A
    Food Res Int; 2018 Nov; 113():18-23. PubMed ID: 30195511
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Antibacterial and antifungal activity of photoactivated ZnO nanoparticles in suspension.
    Kairyte K; Kadys A; Luksiene Z
    J Photochem Photobiol B; 2013 Nov; 128():78-84. PubMed ID: 24035847
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preparation and characterization of active emulsified films based on chitosan-carboxymethyl cellulose containing zinc oxide nano particles.
    Noshirvani N; Ghanbarzadeh B; Mokarram RR; Hashemi M; Coma V
    Int J Biol Macromol; 2017 Jun; 99():530-538. PubMed ID: 28267614
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Physiological effects and mode of action of ZnO nanoparticles against postharvest fungal contaminants.
    Sardella D; Gatt R; Valdramidis VP
    Food Res Int; 2017 Nov; 101():274-279. PubMed ID: 28941694
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis and Nano-Sized Characterization of Bioactive Oregano Essential Oil Molecule-Loaded Small Unilamellar Nanoliposomes with Antifungal Potentialities.
    Aguilar-Pérez KM; Medina DI; Narayanan J; Parra-Saldívar R; Iqbal HMN
    Molecules; 2021 May; 26(10):. PubMed ID: 34068039
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Antifungal coatings based on Ca(OH)2 mixed with ZnO/TiO2 nanomaterials for protection of limestone monuments.
    Gómez-Ortíz N; De la Rosa-García S; González-Gómez W; Soria-Castro M; Quintana P; Oskam G; Ortega-Morales B
    ACS Appl Mater Interfaces; 2013 Mar; 5(5):1556-65. PubMed ID: 23347459
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced physico-mechanical, barrier and antifungal properties of soy protein isolate film by incorporating both plant-sourced cinnamaldehyde and facile synthesized zinc oxide nanosheets.
    Wu J; Sun Q; Huang H; Duan Y; Xiao G; Le T
    Colloids Surf B Biointerfaces; 2019 Aug; 180():31-38. PubMed ID: 31026756
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Innovative approach to sunlight activated biofungicides for strawberry crop protection: ZnO nanoparticles.
    Luksiene Z; Rasiukeviciute N; Zudyte B; Uselis N
    J Photochem Photobiol B; 2020 Jan; 203():111656. PubMed ID: 31676121
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microwave assisted nano (ZnO-TiO2) catalyzed synthesis of some new 4,5,6,7-tetrahydro-6-((5-substituted-1,3,4-oxadiazol-2-yl)methyl)thieno[2,3-c]pyridine as antimicrobial agents.
    Sangshetti JN; Dharmadhikari PP; Chouthe RS; Fatema B; Lad V; Karande V; Darandale SN; Shinde DB
    Bioorg Med Chem Lett; 2013 Apr; 23(7):2250-3. PubMed ID: 23434418
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of Zinc Oxide Nanoparticles Synthesized Using
    Rasha E; Alkhulaifi MM; AlOthman M; Khalid I; Doaa E; Alaa K; Awad MA; Abdalla M
    Front Cell Infect Microbiol; 2021; 11():748739. PubMed ID: 34869059
    [TBL] [Abstract][Full Text] [Related]  

  • 14. First isolation of a novel thermostable antifungal peptide secreted by Aspergillus clavatus.
    Skouri-Gargouri H; Gargouri A
    Peptides; 2008 Nov; 29(11):1871-7. PubMed ID: 18687373
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The antifungal efficacy of nano-metals supported TiO₂ and ozone on the resistant Aspergillus niger spore.
    Yu KP; Huang YT; Yang SC
    J Hazard Mater; 2013 Oct; 261():155-62. PubMed ID: 23921178
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nano-Size Characterization and Antifungal Evaluation of Essential Oil Molecules-Loaded Nanoliposomes.
    Aguilar-Pérez KM; Medina DI; Parra-Saldívar R; Iqbal HMN
    Molecules; 2022 Sep; 27(17):. PubMed ID: 36080492
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Brief in vitro study on Botrytis cinerea and Aspergillus carbonarius regarding growth and ochratoxin A.
    Valero A; Sanchis V; Ramos AJ; Marin S
    Lett Appl Microbiol; 2008 Oct; 47(4):327-32. PubMed ID: 19241528
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative evaluation of antifungal activity of metallic oxide powders (MgO, CaO and ZnO) by an indirect conductimetric assay.
    Sawai J; Yoshikawa T
    J Appl Microbiol; 2004; 96(4):803-9. PubMed ID: 15012819
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synergistic effects of some essential oils against fungal spoilage on pear fruit.
    Nikkhah M; Hashemi M; Habibi Najafi MB; Farhoosh R
    Int J Food Microbiol; 2017 Sep; 257():285-294. PubMed ID: 28763743
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis and Fungicidal Activity of Hydrated Geranylated Phenols against
    Soto M; Estevez-Braun A; Amesty Á; Kluepfel J; Restrepo S; Diaz K; Espinoza L; Olea AF; Taborga L
    Molecules; 2021 Nov; 26(22):. PubMed ID: 34833907
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.