These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
126 related articles for article (PubMed ID: 38369696)
21. High resolution NMR measurements using a 400MHz NMR with an (RE)Ba2Cu3O7-x high-temperature superconducting inner coil: Towards a compact super-high-field NMR. Piao R; Iguchi S; Hamada M; Matsumoto S; Suematsu H; Saito AT; Li J; Nakagome H; Takao T; Takahashi M; Maeda H; Yanagisawa Y J Magn Reson; 2016 Feb; 263():164-171. PubMed ID: 26778351 [TBL] [Abstract][Full Text] [Related]
22. An 800-MHz all-REBCO Insert for the 1.3-GHz LTS/HTS NMR Magnet Program-A Progress Report. Bascuñán J; Hahn S; Lecrevisse T; Song J; Miyagi D; Iwasa Y IEEE Trans Appl Supercond; 2016 Jun; 26(4):. PubMed ID: 31289431 [TBL] [Abstract][Full Text] [Related]
23. Future prospects for NMR magnets: A perspective. Maeda H; Yanagisawa Y J Magn Reson; 2019 Sep; 306():80-85. PubMed ID: 31337560 [TBL] [Abstract][Full Text] [Related]
24. Cryogen-free 400 MHz (9.4 T) solid state MAS NMR system with liquid state NMR potential. Kryukov E; Karabanov A; Langlais D; Iuga D; Reckless R; Good J Solid State Nucl Magn Reson; 2023 Jun; 125():101873. PubMed ID: 37172429 [TBL] [Abstract][Full Text] [Related]
25. Benchtop-NMR and MRI--a new analytical tool in drug delivery research. Metz H; Mäder K Int J Pharm; 2008 Dec; 364(2):170-5. PubMed ID: 18930126 [TBL] [Abstract][Full Text] [Related]
26. Towards a beyond 1 GHz solid-state nuclear magnetic resonance: external lock operation in an external current mode for a 500 MHz nuclear magnetic resonance. Takahashi M; Ebisawa Y; Tennmei K; Yanagisawa Y; Hosono M; Takasugi K; Hase T; Miyazaki T; Fujito T; Nakagome H; Kiyoshi T; Yamazaki T; Maeda H Rev Sci Instrum; 2012 Oct; 83(10):105110. PubMed ID: 23126807 [TBL] [Abstract][Full Text] [Related]
27. A temperature-controlled cryogen free cryostat integrated with transceiver-mode superconducting coil for high-resolution magnetic resonance imaging. Saniour I; Authelet G; Baudouy B; Dubuisson RM; Jourdain L; Willoquet G; Darrasse L; Ginefri JC; Poirier-Quinot M Rev Sci Instrum; 2020 May; 91(5):055106. PubMed ID: 32486746 [TBL] [Abstract][Full Text] [Related]
28. On the magnetic field stability of cryogen-free magnets for magnetic resonance applications. Kryukov E; Perez Linde AJ; Raghunathan S; Burgess S; Jonsen P; Good J Solid State Nucl Magn Reson; 2020 Feb; 105():101639. PubMed ID: 31816589 [TBL] [Abstract][Full Text] [Related]
29. Scalable NMR spectroscopy with semiconductor chips. Ha D; Paulsen J; Sun N; Song YQ; Ham D Proc Natl Acad Sci U S A; 2014 Aug; 111(33):11955-60. PubMed ID: 25092330 [TBL] [Abstract][Full Text] [Related]
30. Assembly and Test of a 3-Nested-Coil 800-MHz REBCO Insert (H800) for the MIT 1.3 GHz LTS/HTS NMR Magnet. Michael PC; Park D; Choi YH; Lee J; Li Y; Bascuñán J; Noguchi S; Hahn S; Iwasa Y IEEE Trans Appl Supercond; 2019 Aug; 29(5):. PubMed ID: 31130801 [TBL] [Abstract][Full Text] [Related]
31. Field Mapping, NMR Lineshape, and Screening Currents Induced Field Analyses for Homogeneity Improvement in LTS/HTS NMR Magnets. Hahn SY; Bascuñán J; Kim WS; Bobrov ES; Lee H; Iwasa Y IEEE Trans Appl Supercond; 2008 Jun; 18(2):856-859. PubMed ID: 31889773 [TBL] [Abstract][Full Text] [Related]
32. High-temperature superconducting radiofrequency probe for magnetic resonance imaging applications operated below ambient pressure in a simple liquid-nitrogen cryostat. Lambert S; Ginefri JC; Poirier-Quinot M; Darrasse L Rev Sci Instrum; 2013 May; 84(5):054701. PubMed ID: 23742569 [TBL] [Abstract][Full Text] [Related]
33. Evaluation of a benchtop cryogen-free low-field ¹H NMR spectrometer for the analysis of sexual enhancement and weight loss dietary supplements adulterated with pharmaceutical substances. Pagès G; Gerdova A; Williamson D; Gilard V; Martino R; Malet-Martino M Anal Chem; 2014 Dec; 86(23):11897-904. PubMed ID: 25337675 [TBL] [Abstract][Full Text] [Related]
34. No-Insulation (NI) HTS Inserts for > 1 GHz LTS/HTS NMR Magnets. Hahn S; Park DK; Voccio J; Bascuñán J; Iwasa Y IEEE Trans Appl Supercond; 2012 Jun; 22(3):. PubMed ID: 31080326 [TBL] [Abstract][Full Text] [Related]
35. A new method to measure the temporal magnetic field instabilities in cryogen-free magnets for magnetic resonance. Kryukov E; Owczarkowski M; Phillipps D; Perez Linde AJ; Burgess S; Good J Solid State Nucl Magn Reson; 2021 Jun; 113():101732. PubMed ID: 33878559 [TBL] [Abstract][Full Text] [Related]
36. High-Temperature Superconducting Magnets for NMR and MRI: R&D Activities at the MIT Francis Bitter Magnet Laboratory. Iwasa Y; Bascuñán J; Hahn S; Tomita M; Yao W IEEE Trans Appl Supercond; 2010 Jun; 20(3):718-721. PubMed ID: 33132668 [TBL] [Abstract][Full Text] [Related]
37. Fragment Screening and Fast Micromolar Detection on a Benchtop NMR Spectrometer Boosted by Photoinduced Hyperpolarization. Stadler GR; Segawa TF; Bütikofer M; Decker V; Loss S; Czarniecki B; Torres F; Riek R Angew Chem Int Ed Engl; 2023 Oct; 62(40):e202308692. PubMed ID: 37524651 [TBL] [Abstract][Full Text] [Related]
38. Development of a superconducting bulk magnet for NMR and MRI. Nakamura T; Tamada D; Yanagi Y; Itoh Y; Nemoto T; Utumi H; Kose K J Magn Reson; 2015 Oct; 259():68-75. PubMed ID: 26295170 [TBL] [Abstract][Full Text] [Related]
39. A Field-Shaking System to Reduce the Screening Current-Induced Field in the 800-MHz HTS Insert of the MIT 1.3-GHz LTS/HTS NMR Magnet: A Small-Model Study. Lee J; Park D; Michael PC; Noguchi S; Bascuñán J; Iwasa Y IEEE Trans Appl Supercond; 2018 Apr; 28(3):. PubMed ID: 29686477 [TBL] [Abstract][Full Text] [Related]
40. Numerical and Experimental Study to Fabricate the New Type Compact NMR Device Using Stacked HTS Bulks. Kim SB; Kimoto T; Yano Y; Hahn S; Iwasa Y IEEE Trans Appl Supercond; 2012 Jun; 22(3):. PubMed ID: 32952373 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]