These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 38369850)

  • 1. The influence of cadence on fatigue during maximal sprint cycling in world-class and elite sprint cyclists.
    Wackwitz T; Minahan C; Menaspà P; Crampton M; Bellinger P
    J Sports Sci; 2023 Dec; 41(24):2229-2235. PubMed ID: 38369850
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Field- and Laboratory-derived Power-Cadence Profiles in World-Class and Elite Track Sprint Cyclists.
    Wackwitz T; Minahan C; Menaspà P; Crampton M; Bellinger P
    J Sports Sci; 2023 Sep; 41(17):1635-1642. PubMed ID: 38049956
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantification of maximal power output in well-trained cyclists.
    Wackwitz TA; Minahan CL; King T; Du Plessis C; Andrews MH; Bellinger PM
    J Sports Sci; 2021 Jan; 39(1):84-90. PubMed ID: 32787678
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of resistive load on power output and fatigue during intermittent sprint cycling exercise in children.
    Bogdanis GC; Papaspyrou A; Theos A; Maridaki M
    Eur J Appl Physiol; 2007 Oct; 101(3):313-20. PubMed ID: 17602236
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plasma Acidosis and Peak Power after a Supramaximal Trial in Elite Sprint and Endurance Cyclists: Effect of Bicarbonate.
    Mildenhall MJ; Maunder ED; Plews DJ; Lindinger MI; Cairns SP
    Med Sci Sports Exerc; 2023 May; 55(5):932-944. PubMed ID: 36729629
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fatigue-Free Force-Velocity and Power-Velocity Profiles for Elite Track Sprint Cyclists: The Influence of Duration, Gear Ratio and Pedalling Rates.
    Dunst AK; Hesse C; Ueberschär O; Holmberg HC
    Sports (Basel); 2022 Aug; 10(9):. PubMed ID: 36136385
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Novel Approach to the Determination of Time- and Fatigue-Dependent Efficiency during Maximal Cycling Sprints.
    Dunst AK; Hesse C; Ueberschär O; Holmberg HC
    Sports (Basel); 2023 Jan; 11(2):. PubMed ID: 36828314
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Power output, cadence, and torque are similar between the forward standing and traditional sprint cycling positions.
    Merkes PFJ; Menaspà P; Abbiss CR
    Scand J Med Sci Sports; 2020 Jan; 30(1):64-73. PubMed ID: 31544261
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Concept of Optimal Dynamic Pedalling Rate and Its Application to Power Output and Fatigue in Track Cycling Sprinters-A Case Study.
    Dunst AK; Hesse C; Ueberschär O
    Sports (Basel); 2023 Jan; 11(1):. PubMed ID: 36668723
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reliability and Validity of Cycling Sprint Performance at Isolinear Mode Without Torque Factor: A Preliminary Study in Well-Trained Male Cyclists.
    Nascimento EMF; Klitzke Borszcz F; Ventura TP; Caputo F; Guglielmo LGA; de Lucas RD
    Res Q Exerc Sport; 2024 Feb; ():1-8. PubMed ID: 38319597
    [No Abstract]   [Full Text] [Related]  

  • 11. Maximal Sprint Power in Road Cyclists After Variable and Nonvariable High-Intensity Exercise.
    Menaspà P; Martin DT; Victor J; Abbiss CR
    J Strength Cond Res; 2015 Nov; 29(11):3156-61. PubMed ID: 25932988
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Isovelocity vs. Isoinertial Sprint Cycling Tests for Power- and Torque-cadence Relationships.
    Kordi M; Folland J; Goodall S; Barratt P; Howatson G
    Int J Sports Med; 2019 Dec; 40(14):897-902. PubMed ID: 31590190
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The relationship between freely chosen cadence and optimal cadence in cycling.
    Emanuele U; Horn T; Denoth J
    Int J Sports Physiol Perform; 2012 Dec; 7(4):375-81. PubMed ID: 22868209
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cycling-specific isometric resistance training improves peak power output in elite sprint cyclists.
    Kordi M; Folland JP; Goodall S; Menzies C; Patel TS; Evans M; Thomas K; Howatson G
    Scand J Med Sci Sports; 2020 Sep; 30(9):1594-1604. PubMed ID: 32516483
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Force-velocity profiles of track cyclists differ between seated and non-seated positions.
    Dwyer DB; Molaro C; Rouffet DM
    Sports Biomech; 2023 Apr; 22(4):621-632. PubMed ID: 35758132
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Human power output during repeated sprint cycle exercise: the influence of thermal stress.
    Ball D; Burrows C; Sargeant AJ
    Eur J Appl Physiol Occup Physiol; 1999 Mar; 79(4):360-6. PubMed ID: 10090637
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanical and morphological determinants of peak power output in elite cyclists.
    Kordi M; Folland J; Goodall S; Haralabidis N; Maden-Wilkinson T; Sarika Patel T; Leeder J; Barratt P; Howatson G
    Scand J Med Sci Sports; 2020 Feb; 30(2):227-237. PubMed ID: 31598998
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Understanding optimal cadence dynamics: a systematic analysis of the power-velocity relationship in track cyclists with increasing exercise intensity.
    Dunst AK; Hesse C; Ueberschär O
    Front Physiol; 2024; 15():1343601. PubMed ID: 38645689
    [No Abstract]   [Full Text] [Related]  

  • 19. Differences between sprint tests under laboratory and actual cycling conditions.
    Bertucci W; Taiar R; Grappe F
    J Sports Med Phys Fitness; 2005 Sep; 45(3):277-83. PubMed ID: 16230977
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Track cycling sprint sex differences using power data.
    Ferguson H; Harnish C; Klich S; Michalik K; Dunst AK; Zhou T; Chase JG
    PeerJ; 2023; 11():e15671. PubMed ID: 37456896
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.