These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
108 related articles for article (PubMed ID: 38369881)
1. Efficient Removal of Iodine from Water by a Calix[4]pyrrole-Based Nanofilm. Wang T; Liu X; Yang J; Tang J; Zhai B; Luo Y; Liu Z; Fang Y Langmuir; 2024 Feb; 40(8):4489-4495. PubMed ID: 38369881 [TBL] [Abstract][Full Text] [Related]
2. Conformationally tunable calix[4]pyrrole-based nanofilms for efficient molecular separation. Liu X; Tang J; Yang J; Zhang H; Fang Y J Colloid Interface Sci; 2022 Mar; 610():368-375. PubMed ID: 34923274 [TBL] [Abstract][Full Text] [Related]
3. Calix[4]pyrrole-based Crosslinked Polymer Networks for Highly Effective Iodine Adsorption from Water. Xie L; Zheng Z; Lin Q; Zhou H; Ji X; Sessler JL; Wang H Angew Chem Int Ed Engl; 2022 Jan; 61(1):e202113724. PubMed ID: 34747097 [TBL] [Abstract][Full Text] [Related]
4. Porous calix[4]pyrrole-based polymers with high surface area for efficient removal of polar organic micropollutants from water. Zhang S; Bie W; Duan X; Wu Z; Zhang L; Li H; Wang Z; Wei M; Kong F; Wang W Chemosphere; 2024 Oct; 366():143548. PubMed ID: 39413930 [TBL] [Abstract][Full Text] [Related]
5. Impact of (nano ZnO/multi-wall CNTs) prepared by arc discharge method on the removal efficiency of stable iodine El-Khatib AM; Bondouk II; Omar KM; Hamdy A; Abbas MI; El-Khatib M; Hammoury SI; Gouda MM Sci Rep; 2024 Feb; 14(1):4242. PubMed ID: 38378858 [TBL] [Abstract][Full Text] [Related]
6. High-Performance Sensing of Formic Acid Vapor Enabled by a Newly Developed Nanofilm-Based Fluorescent Sensor. Wu Y; Hua C; Liu Z; Yang J; Huang R; Li M; Liu K; Miao R; Fang Y Anal Chem; 2021 May; 93(18):7094-7101. PubMed ID: 33905230 [TBL] [Abstract][Full Text] [Related]
7. Robust and Large-Area Calix[4]pyrrole-Based Nanofilms Enabled by Air/DMSO Interfacial Self-Assembly-Confined Synthesis. Yang J; Liu X; Tang J; Dėdinaitė A; Liu J; Miao R; Liu K; Peng J; Claesson PM; Liu X; Fang Y ACS Appl Mater Interfaces; 2021 Jan; 13(2):3336-3348. PubMed ID: 33356087 [TBL] [Abstract][Full Text] [Related]
8. Construction of hydrophobic interface on natural biomaterials for higher efficient and reversible radioactive iodine adsorption in water. Zheng B; Liu X; Hu J; Wang F; Hu X; Zhu Y; Lv X; Du J; Xiao D J Hazard Mater; 2019 Apr; 368():81-89. PubMed ID: 30665111 [TBL] [Abstract][Full Text] [Related]
9. Covalent Organic Framework as a Metal-Free Photocatalyst for Dye Degradation and Radioactive Iodine Adsorption. Ruidas S; Chowdhury A; Ghosh A; Ghosh A; Mondal S; Wonanke ADD; Addicoat M; Das AK; Modak A; Bhaumik A Langmuir; 2023 Mar; 39(11):4071-4081. PubMed ID: 36905363 [TBL] [Abstract][Full Text] [Related]
10. Construction of Ketoenamine-Based Covalent Organic Frameworks with Electron-Rich Sites for Efficient and Rapid Removal of Iodine from Solution. Tao Q; Zhang X; Jing L; Sun L; Dang P Molecules; 2023 Dec; 28(24):. PubMed ID: 38138639 [TBL] [Abstract][Full Text] [Related]
11. Removal of radioactive iodine from water using Ag2O grafted titanate nanolamina as efficient adsorbent. Bo A; Sarina S; Zheng Z; Yang D; Liu H; Zhu H J Hazard Mater; 2013 Feb; 246-247():199-205. PubMed ID: 23313892 [TBL] [Abstract][Full Text] [Related]
12. Fabrication of Protonated Two-Dimensional Metal-Organic Framework Nanosheets for Highly Efficient Iodine Capture from Water. Yu CX; Li XJ; Zong JS; You DJ; Liang AP; Zhou YL; Li XQ; Liu LL Inorg Chem; 2022 Sep; 61(35):13883-13892. PubMed ID: 35998569 [TBL] [Abstract][Full Text] [Related]
13. Efficient capture of radioactive iodine by ZIF-8 derived porous carbon. Liu S; Zeng Y; Zhang A; Song Y; Ni Y; Li J; Chi F; Xiao C J Environ Radioact; 2022 Aug; 249():106895. PubMed ID: 35594799 [TBL] [Abstract][Full Text] [Related]
14. Synthesis and characterization of Ag@Cu-based MOFs as efficient adsorbents for iodine anions removal from aqueous solutions. ; ; . PubMed ID: 37331177 [TBL] [Abstract][Full Text] [Related]