BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 38369946)

  • 1. Development of a Thermodynamically Favorable Multi-enzyme Cascade Reaction for Efficient Sustainable Production of ω-Amino Fatty Acids and α,ω-Diamines.
    Li JM; Shi K; Li AT; Zhang ZJ; Yu HL; Xu JH
    ChemSusChem; 2024 Mar; 17(6):e202400204. PubMed ID: 38369946
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of a Thermodynamically Favorable Multi-enzyme Cascade Reaction for Efficient Sustainable Production of ω-Amino Fatty Acids and α,ω-Diamines.
    Li JM; Shi K; Li AT; Zhang ZJ; Yu HL; Xu JH
    ChemSusChem; 2024 Mar; 17(6):e202301477. PubMed ID: 38117609
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Construction of multi-enzyme cascade reactions and its application in the synthesis of bifunctional chemicals].
    Li J; Shi K; Zhang Z; Xu J; Yu H
    Sheng Wu Gong Cheng Xue Bao; 2023 Jun; 39(6):2158-2189. PubMed ID: 37401588
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transforming Inert Cycloalkanes into α,ω-Diamines by Designed Enzymatic Cascade Catalysis.
    Zhang Z; Fang L; Wang F; Deng Y; Jiang Z; Li A
    Angew Chem Int Ed Engl; 2023 Apr; 62(16):e202215935. PubMed ID: 36840725
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multienzymatic synthesis of nylon monomers from vegetable oils.
    Lin L; Ledesma-Amaro R; Ji XJ; Huang H
    Trends Biotechnol; 2023 Feb; 41(2):150-153. PubMed ID: 36180355
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biosynthesis of aliphatic plastic monomers with amino residues in
    Park G; Kim YC; Jang M; Park H; Lee HW; Jeon W; Kim BG; Choi KY; Ahn J
    Front Bioeng Biotechnol; 2022; 10():825576. PubMed ID: 36714625
    [No Abstract]   [Full Text] [Related]  

  • 7. Metabolic engineering for the production of dicarboxylic acids and diamines.
    Chae TU; Ahn JH; Ko YS; Kim JW; Lee JA; Lee EH; Lee SY
    Metab Eng; 2020 Mar; 58():2-16. PubMed ID: 30905694
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bio-based production of monomers and polymers by metabolically engineered microorganisms.
    Chung H; Yang JE; Ha JY; Chae TU; Shin JH; Gustavsson M; Lee SY
    Curr Opin Biotechnol; 2015 Dec; 36():73-84. PubMed ID: 26318077
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineering Escherichia coli for Conversion of Glucose to Medium-Chain ω-Hydroxy Fatty Acids and α,ω-Dicarboxylic Acids.
    Bowen CH; Bonin J; Kogler A; Barba-Ostria C; Zhang F
    ACS Synth Biol; 2016 Mar; 5(3):200-6. PubMed ID: 26669968
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Diamine Biosynthesis: Research Progress and Application Prospects.
    Wang L; Li G; Deng Y
    Appl Environ Microbiol; 2020 Nov; 86(23):. PubMed ID: 32978133
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biotechnological production of mono- and diamines using bacteria: recent progress, applications, and perspectives.
    Wendisch VF; Mindt M; Pérez-García F
    Appl Microbiol Biotechnol; 2018 Apr; 102(8):3583-3594. PubMed ID: 29520601
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biosynthesis of ω-hydroxy fatty acids and related chemicals from natural fatty acids by recombinant Escherichia coli.
    Kim SK; Park YC
    Appl Microbiol Biotechnol; 2019 Jan; 103(1):191-199. PubMed ID: 30417307
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Upcycling of Agricultural Waste Stream to High-Molecular-Weight Bio-based Poly(ethylene 2,5-furanoate).
    Niskanen J; Mahlberg R; van Strien N; Rautiainen S; Kivilahti E; Koivuranta K; Anghelescu-Hakala A
    ChemSusChem; 2024 May; 17(9):e202400773. PubMed ID: 38747319
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Construction of an engineered biocatalyst system for the production of medium-chain α,ω-dicarboxylic acids from medium-chain ω-hydroxycarboxylic acids.
    Kim TH; Kang SH; Park JB; Oh DK
    Biotechnol Bioeng; 2020 Sep; 117(9):2648-2657. PubMed ID: 32436987
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biosynthesis of the Nylon 12 Monomer, ω-Aminododecanoic Acid with Novel CYP153A, AlkJ, and ω-TA Enzymes.
    Ahsan MM; Jeon H; P Nadarajan S; Chung T; Yoo HW; Kim BG; Patil MD; Yun H
    Biotechnol J; 2018 Apr; 13(4):e1700562. PubMed ID: 29247604
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adding value to plant oils and fatty acids: Biological transformation of fatty acids into ω-hydroxycarboxylic, α,ω-dicarboxylic, and ω-aminocarboxylic acids.
    Seo JH; Lee SM; Lee J; Park JB
    J Biotechnol; 2015 Dec; 216():158-66. PubMed ID: 26546054
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combination of ester biosynthesis and ω-oxidation for production of mono-ethyl dicarboxylic acids and di-ethyl esters in a whole-cell biocatalytic setup with Escherichia coli.
    van Nuland YM; Eggink G; Weusthuis RA
    Microb Cell Fact; 2017 Nov; 16(1):185. PubMed ID: 29096635
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enzymatic cascade biosynthesis reaction of musky macrolactones from fatty acids.
    Meng S; Guo J; Li Z; Nie K; Xu H; Tan T; Liu L
    Enzyme Microb Technol; 2019 Dec; 131():109417. PubMed ID: 31615680
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recent advances in microbial production of diamines, aminocarboxylic acids, and diacids as potential platform chemicals and bio-based polyamides monomers.
    Son J; Sohn YJ; Baritugo KA; Jo SY; Song HM; Park SJ
    Biotechnol Adv; 2023; 62():108070. PubMed ID: 36462631
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chloromethylation of Lignin as a Route to Functional Material with Catalytic Properties in Cross-Coupling and Click Reactions.
    Mohan MK; Silenko O; Krasnou I; Volobujeva O; Kulp M; Ošeka M; Lukk T; Karpichev Y
    ChemSusChem; 2024 Apr; 17(8):e202400587. PubMed ID: 38546420
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.