These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 38369946)

  • 1. Development of a Thermodynamically Favorable Multi-enzyme Cascade Reaction for Efficient Sustainable Production of ω-Amino Fatty Acids and α,ω-Diamines.
    Li JM; Shi K; Li AT; Zhang ZJ; Yu HL; Xu JH
    ChemSusChem; 2024 Mar; 17(6):e202400204. PubMed ID: 38369946
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of a Thermodynamically Favorable Multi-enzyme Cascade Reaction for Efficient Sustainable Production of ω-Amino Fatty Acids and α,ω-Diamines.
    Li JM; Shi K; Li AT; Zhang ZJ; Yu HL; Xu JH
    ChemSusChem; 2024 Mar; 17(6):e202301477. PubMed ID: 38117609
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Construction of multi-enzyme cascade reactions and its application in the synthesis of bifunctional chemicals].
    Li J; Shi K; Zhang Z; Xu J; Yu H
    Sheng Wu Gong Cheng Xue Bao; 2023 Jun; 39(6):2158-2189. PubMed ID: 37401588
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transforming Inert Cycloalkanes into α,ω-Diamines by Designed Enzymatic Cascade Catalysis.
    Zhang Z; Fang L; Wang F; Deng Y; Jiang Z; Li A
    Angew Chem Int Ed Engl; 2023 Apr; 62(16):e202215935. PubMed ID: 36840725
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multienzymatic synthesis of nylon monomers from vegetable oils.
    Lin L; Ledesma-Amaro R; Ji XJ; Huang H
    Trends Biotechnol; 2023 Feb; 41(2):150-153. PubMed ID: 36180355
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biosynthesis of aliphatic plastic monomers with amino residues in
    Park G; Kim YC; Jang M; Park H; Lee HW; Jeon W; Kim BG; Choi KY; Ahn J
    Front Bioeng Biotechnol; 2022; 10():825576. PubMed ID: 36714625
    [No Abstract]   [Full Text] [Related]  

  • 7. Metabolic engineering for the production of dicarboxylic acids and diamines.
    Chae TU; Ahn JH; Ko YS; Kim JW; Lee JA; Lee EH; Lee SY
    Metab Eng; 2020 Mar; 58():2-16. PubMed ID: 30905694
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bio-based production of monomers and polymers by metabolically engineered microorganisms.
    Chung H; Yang JE; Ha JY; Chae TU; Shin JH; Gustavsson M; Lee SY
    Curr Opin Biotechnol; 2015 Dec; 36():73-84. PubMed ID: 26318077
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineering Escherichia coli for Conversion of Glucose to Medium-Chain ω-Hydroxy Fatty Acids and α,ω-Dicarboxylic Acids.
    Bowen CH; Bonin J; Kogler A; Barba-Ostria C; Zhang F
    ACS Synth Biol; 2016 Mar; 5(3):200-6. PubMed ID: 26669968
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Diamine Biosynthesis: Research Progress and Application Prospects.
    Wang L; Li G; Deng Y
    Appl Environ Microbiol; 2020 Nov; 86(23):. PubMed ID: 32978133
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biotechnological production of mono- and diamines using bacteria: recent progress, applications, and perspectives.
    Wendisch VF; Mindt M; Pérez-García F
    Appl Microbiol Biotechnol; 2018 Apr; 102(8):3583-3594. PubMed ID: 29520601
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biosynthesis of ω-hydroxy fatty acids and related chemicals from natural fatty acids by recombinant Escherichia coli.
    Kim SK; Park YC
    Appl Microbiol Biotechnol; 2019 Jan; 103(1):191-199. PubMed ID: 30417307
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Upcycling of Agricultural Waste Stream to High-Molecular-Weight Bio-based Poly(ethylene 2,5-furanoate).
    Niskanen J; Mahlberg R; van Strien N; Rautiainen S; Kivilahti E; Koivuranta K; Anghelescu-Hakala A
    ChemSusChem; 2024 May; 17(9):e202400773. PubMed ID: 38747319
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Construction of an engineered biocatalyst system for the production of medium-chain α,ω-dicarboxylic acids from medium-chain ω-hydroxycarboxylic acids.
    Kim TH; Kang SH; Park JB; Oh DK
    Biotechnol Bioeng; 2020 Sep; 117(9):2648-2657. PubMed ID: 32436987
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biosynthesis of the Nylon 12 Monomer, ω-Aminododecanoic Acid with Novel CYP153A, AlkJ, and ω-TA Enzymes.
    Ahsan MM; Jeon H; P Nadarajan S; Chung T; Yoo HW; Kim BG; Patil MD; Yun H
    Biotechnol J; 2018 Apr; 13(4):e1700562. PubMed ID: 29247604
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adding value to plant oils and fatty acids: Biological transformation of fatty acids into ω-hydroxycarboxylic, α,ω-dicarboxylic, and ω-aminocarboxylic acids.
    Seo JH; Lee SM; Lee J; Park JB
    J Biotechnol; 2015 Dec; 216():158-66. PubMed ID: 26546054
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combination of ester biosynthesis and ω-oxidation for production of mono-ethyl dicarboxylic acids and di-ethyl esters in a whole-cell biocatalytic setup with Escherichia coli.
    van Nuland YM; Eggink G; Weusthuis RA
    Microb Cell Fact; 2017 Nov; 16(1):185. PubMed ID: 29096635
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enzymatic cascade biosynthesis reaction of musky macrolactones from fatty acids.
    Meng S; Guo J; Li Z; Nie K; Xu H; Tan T; Liu L
    Enzyme Microb Technol; 2019 Dec; 131():109417. PubMed ID: 31615680
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recent advances in microbial production of diamines, aminocarboxylic acids, and diacids as potential platform chemicals and bio-based polyamides monomers.
    Son J; Sohn YJ; Baritugo KA; Jo SY; Song HM; Park SJ
    Biotechnol Adv; 2023; 62():108070. PubMed ID: 36462631
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chloromethylation of Lignin as a Route to Functional Material with Catalytic Properties in Cross-Coupling and Click Reactions.
    Mohan MK; Silenko O; Krasnou I; Volobujeva O; Kulp M; Ošeka M; Lukk T; Karpichev Y
    ChemSusChem; 2024 Apr; 17(8):e202400587. PubMed ID: 38546420
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.