These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 38370168)

  • 1. Different particle sizes of
    Fan M; Choi YJ; Wedamulla NE; Kim SH; Bae SM; Yang D; Kang H; Tang Y; Moon SH; Kim EK
    Heliyon; 2024 Feb; 10(4):e24915. PubMed ID: 38370168
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fabrication of Porous Spherical Beads from Corn Starch by Using a 3D Food Printing System.
    Ahmadzadeh S; Ubeyitogullari A
    Foods; 2022 Mar; 11(7):. PubMed ID: 35407000
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Undaria pinnatifida gel inks for food 3D printing are developed based on the colloidal properties of Undaria pinnatifida slurry and protein/colloidal/starch substances.
    Sun Y; Huang X; Guo S; Wang Y; Feng D; Dong X; Qi H
    Int J Biol Macromol; 2024 Mar; 261(Pt 1):129788. PubMed ID: 38290637
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of Hydrocolloids on Rheological Properties and Printability of Vegetable Inks for 3D Food Printing.
    Kim HW; Lee JH; Park SM; Lee MH; Lee IW; Doh HS; Park HJ
    J Food Sci; 2018 Dec; 83(12):2923-2932. PubMed ID: 30506688
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigation of the structure, rheology and 3D printing characteristics of corn starch regulated by glycyrrhizic acid.
    Liu B; Zhao Y; Li Y; Tao L; Pan P; Bi Y; Song S; Yu L
    Int J Biol Macromol; 2024 Apr; 263(Pt 1):130277. PubMed ID: 38378116
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel strategy for optimizing of corn starch-based ink food 3D printing process: Printability prediction based on BP-ANN model.
    Jiao X; Ren G; Law CL; Li L; Cao W; Luo Z; Pan L; Duan X; Chen J; Liu W
    Int J Biol Macromol; 2024 Jul; 276(Pt 2):133921. PubMed ID: 39025175
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rheological insights into 3D printing of drug products: Drug nanocrystal-poloxamer gels for semisolid extrusion.
    Junnila A; Mortier L; Arbiol A; Harju E; Tomberg T; Hirvonen J; Viitala T; Karttunen AP; Peltonen L
    Int J Pharm; 2024 Apr; 655():124070. PubMed ID: 38554740
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigation of the mechanism of gelatin to enhance 3D printing accuracy of corn starch gel: From perspective of phase morphological changes.
    Cheng Y; Chen Y; Gao W; Kang X; Sui J; Yu B; Guo L; Zhao M; Yuan C; Cui B
    Int J Biol Macromol; 2024 Jan; 254(Pt 2):127323. PubMed ID: 37879577
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Semi-solid extrusion 3D printing of starch-based soft dosage forms for the treatment of paediatric latent tuberculosis infection.
    Chatzitaki AT; Mystiridou E; Bouropoulos N; Ritzoulis C; Karavasili C; Fatouros DG
    J Pharm Pharmacol; 2022 Oct; 74(10):1498-1506. PubMed ID: 34468746
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Effects of Solid Particle Containing Inks on the Printing Quality of Porous Pharmaceutical Structures Fabricated by 3D Semi-Solid Extrusion Printing.
    Teoh XY; Zhang B; Belton P; Chan SY; Qi S
    Pharm Res; 2022 Jun; 39(6):1267-1279. PubMed ID: 35661083
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigation on characteristics of 3D printing using Nostoc sphaeroides biomass.
    An YJ; Guo CF; Zhang M; Zhong ZP
    J Sci Food Agric; 2019 Jan; 99(2):639-646. PubMed ID: 29951991
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combined effect of heating temperature and content of pectin on the textural properties, rheology, and 3D printability of potato starch gel.
    Wedamulla NE; Fan M; Choi YJ; Kim EK
    Int J Biol Macromol; 2023 Dec; 253(Pt 5):127129. PubMed ID: 37778578
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chocolate-based Ink Three-dimensional Printing (Ci3DP).
    Karyappa R; Hashimoto M
    Sci Rep; 2019 Oct; 9(1):14178. PubMed ID: 31578354
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Starch as edible ink in 3D printing for food applications: a review.
    Chen Y; McClements DJ; Peng X; Chen L; Xu Z; Meng M; Zhou X; Zhao J; Jin Z
    Crit Rev Food Sci Nutr; 2024; 64(2):456-471. PubMed ID: 35997260
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rheological and physicochemical properties of Spirulina platensis residues-based inks for extrusion 3D food printing.
    Wang M; Lu X; Zheng X; Li W; Wang L; Qian Y; Zeng M
    Food Res Int; 2023 Jul; 169():112823. PubMed ID: 37254399
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of an Abalone 3D Food Printing Ink for the Personalized Senior-Friendly Foods.
    Yun HJ; Han NR; An HW; Jung WK; Kim HW; Lee SG
    Foods; 2022 Oct; 11(20):. PubMed ID: 37431010
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigation of 3D printing of toddler foods with special shape and function based on fenugreek gum and flaxseed protein.
    Niu D; Zhang M; Mujumdar AS; Li J
    Int J Biol Macromol; 2023 Dec; 253(Pt 5):127203. PubMed ID: 37793534
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dry heating treatment: A potential tool to improve the wheat starch properties for 3D food printing application.
    Maniglia BC; Lima DC; da Matta Júnior M; Oge A; Le-Bail P; Augusto PED; Le-Bail A
    Food Res Int; 2020 Nov; 137():109731. PubMed ID: 33233299
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 3D printing of milk-based product.
    Lee CP; Karyappa R; Hashimoto M
    RSC Adv; 2020 Aug; 10(50):29821-29828. PubMed ID: 35518232
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Generation of porous starch beads via a 3D food printer: The effects of amylose content and drying technique.
    Ahmadzadeh S; Ubeyitogullari A
    Carbohydr Polym; 2023 Feb; 301(Pt A):120296. PubMed ID: 36436852
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.