These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 38370342)
21. ContrAttNet: Contribution and attention approach to multivariate time-series data imputation. Yin Y; Huang C; Bao X Network; 2024 Jun; ():1-24. PubMed ID: 38828665 [TBL] [Abstract][Full Text] [Related]
22. Missing Value Imputation of Time-Series Air-Quality Data via Deep Neural Networks. Kim T; Kim J; Yang W; Lee H; Choo J Int J Environ Res Public Health; 2021 Nov; 18(22):. PubMed ID: 34831969 [TBL] [Abstract][Full Text] [Related]
23. missForest with feature selection using binary particle swarm optimization improves the imputation accuracy of continuous data. Jin H; Jung S; Won S Genes Genomics; 2022 Jun; 44(6):651-658. PubMed ID: 35384632 [TBL] [Abstract][Full Text] [Related]
24. Selecting the model for multiple imputation of missing data: Just use an IC! Noghrehchi F; Stoklosa J; Penev S; Warton DI Stat Med; 2021 May; 40(10):2467-2497. PubMed ID: 33629367 [TBL] [Abstract][Full Text] [Related]
25. Missing data imputation on biomedical data using deeply learned clustering and L2 regularized regression based on symmetric uncertainty. Nagarajan G; Dhinesh Babu LD Artif Intell Med; 2022 Jan; 123():102214. PubMed ID: 34998512 [TBL] [Abstract][Full Text] [Related]
26. A classifier ensemble approach for the missing feature problem. Nanni L; Lumini A; Brahnam S Artif Intell Med; 2012 May; 55(1):37-50. PubMed ID: 22188722 [TBL] [Abstract][Full Text] [Related]
27. A multiple imputation approach for MNAR mechanisms compatible with Heckman's model. Galimard JE; Chevret S; Protopopescu C; Resche-Rigon M Stat Med; 2016 Jul; 35(17):2907-20. PubMed ID: 26893215 [TBL] [Abstract][Full Text] [Related]
28. Sparse Convolutional Denoising Autoencoders for Genotype Imputation. Chen J; Shi X Genes (Basel); 2019 Aug; 10(9):. PubMed ID: 31466333 [TBL] [Abstract][Full Text] [Related]
29. The rise of multiple imputation: a review of the reporting and implementation of the method in medical research. Hayati Rezvan P; Lee KJ; Simpson JA BMC Med Res Methodol; 2015 Apr; 15():30. PubMed ID: 25880850 [TBL] [Abstract][Full Text] [Related]
30. Missing value imputation in high-dimensional phenomic data: imputable or not, and how? Liao SG; Lin Y; Kang DD; Chandra D; Bon J; Kaminski N; Sciurba FC; Tseng GC BMC Bioinformatics; 2014 Nov; 15(1):346. PubMed ID: 25371041 [TBL] [Abstract][Full Text] [Related]
31. Imputing missing covariates in time-to-event analysis within distributed research networks: A simulation study. Li D; Wong J; Li X; Toh S; Wang R Pharmacoepidemiol Drug Saf; 2023 Mar; 32(3):330-340. PubMed ID: 36380400 [TBL] [Abstract][Full Text] [Related]
32. Missing Value Estimation using Clustering and Deep Learning within Multiple Imputation Framework. Samad MD; Abrar S; Diawara N Knowl Based Syst; 2022 Aug; 249():. PubMed ID: 36159738 [TBL] [Abstract][Full Text] [Related]
33. Multiple imputation with sequential penalized regression. Zahid FM; Heumann C Stat Methods Med Res; 2019 May; 28(5):1311-1327. PubMed ID: 29451087 [TBL] [Abstract][Full Text] [Related]
34. MVIAeval: a web tool for comprehensively evaluating the performance of a new missing value imputation algorithm. Wu WS; Jhou MJ BMC Bioinformatics; 2017 Jan; 18(1):31. PubMed ID: 28086746 [TBL] [Abstract][Full Text] [Related]
35. Spatial imputation for air pollutants data sets via low rank matrix completion algorithm. Liu X; Wang X; Zou L; Xia J; Pang W Environ Int; 2020 Jun; 139():105713. PubMed ID: 32289585 [TBL] [Abstract][Full Text] [Related]
36. A combined test for feature selection on sparse metaproteomics data-an alternative to missing value imputation. Plancade S; Berland M; Blein-Nicolas M; Langella O; Bassignani A; Juste C PeerJ; 2022; 10():e13525. PubMed ID: 35769140 [TBL] [Abstract][Full Text] [Related]
37. Variable selection for multiply-imputed data with application to dioxin exposure study. Chen Q; Wang S Stat Med; 2013 Sep; 32(21):3646-59. PubMed ID: 23526243 [TBL] [Abstract][Full Text] [Related]
38. A comparative study of variable selection methods in the context of developing psychiatric screening instruments. Lu F; Petkova E Stat Med; 2014 Feb; 33(3):401-21. PubMed ID: 23934941 [TBL] [Abstract][Full Text] [Related]
39. Comparison of regression imputation methods of baseline covariates that predict survival outcomes. Solomon N; Lokhnygina Y; Halabi S J Clin Transl Sci; 2020 Sep; 5(1):e40. PubMed ID: 33948262 [TBL] [Abstract][Full Text] [Related]
40. Sensitivity to imputation models and assumptions in receiver operating characteristic analysis with incomplete data. Karakaya J; Karabulut E; Yucel RM J Stat Comput Simul; 2015; 85(17):3498-3511. PubMed ID: 26379316 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]