BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 38370344)

  • 1. Synergistic Integration of Deep Neural Networks and Finite Element Method with Applications of Nonlinear Large Deformation Biomechanics.
    Liang L; Liu M; Elefteriades J; Sun W
    Comput Methods Appl Mech Eng; 2023 Nov; 416():. PubMed ID: 38370344
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synergistic Integration of Deep Neural Networks and Finite Element Method with Applications for Biomechanical Analysis of Human Aorta.
    Liang L; Liu M; Elefteriades J; Sun W
    bioRxiv; 2023 Apr; ():. PubMed ID: 37066215
    [TBL] [Abstract][Full Text] [Related]  

  • 3. PyTorch-FEA: Autograd-enabled finite element analysis methods with applications for biomechanical analysis of human aorta.
    Liang L; Liu M; Elefteriades J; Sun W
    Comput Methods Programs Biomed; 2023 Aug; 238():107616. PubMed ID: 37230048
    [TBL] [Abstract][Full Text] [Related]  

  • 4. PyTorch-FEA: Autograd-enabled Finite Element Analysis Methods with Applications for Biomechanical Analysis of Human Aorta.
    Liang L; Liu M; Elefteriades J; Sun W
    bioRxiv; 2023 Mar; ():. PubMed ID: 37034587
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Review of Machine Learning Techniques in Soft Tissue Biomechanics and Biomaterials.
    Donmazov S; Saruhan EN; Pekkan K; Piskin S
    Cardiovasc Eng Technol; 2024 Jul; ():. PubMed ID: 38956008
    [TBL] [Abstract][Full Text] [Related]  

  • 6. HiDeNN-FEM: A seamless machine learning approach to nonlinear finite element analysis.
    Liu Y; Park C; Lu Y; Mojumder S; Liu WK; Qian D
    Comput Mech; 2023 Jul; 72(1):173-194. PubMed ID: 38107347
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A deep learning approach to estimate stress distribution: a fast and accurate surrogate of finite-element analysis.
    Liang L; Liu M; Martin C; Sun W
    J R Soc Interface; 2018 Jan; 15(138):. PubMed ID: 29367242
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A machine learning approach for real-time modelling of tissue deformation in image-guided neurosurgery.
    Tonutti M; Gras G; Yang GZ
    Artif Intell Med; 2017 Jul; 80():39-47. PubMed ID: 28750949
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Finite-element neural networks for solving differential equations.
    Ramuhalli P; Udpa L; Udpa SS
    IEEE Trans Neural Netw; 2005 Nov; 16(6):1381-92. PubMed ID: 16342482
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deep learning for biomechanical modeling of facial tissue deformation in orthognathic surgical planning.
    Lampen N; Kim D; Fang X; Xu X; Kuang T; Deng HH; Barber JC; Gateno J; Xia J; Yan P
    Int J Comput Assist Radiol Surg; 2022 May; 17(5):945-952. PubMed ID: 35362849
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Real-time biomechanics using the finite element method and machine learning: Review and perspective.
    Phellan R; Hachem B; Clin J; Mac-Thiong JM; Duong L
    Med Phys; 2021 Jan; 48(1):7-18. PubMed ID: 33222226
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neural Network Approaches for Soft Biological Tissue and Organ Simulations.
    Sacks MS; Motiwale S; Goodbrake C; Zhang W
    J Biomech Eng; 2022 Dec; 144(12):. PubMed ID: 36193891
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Jump-GRS: a multi-phase approach to structured pruning of neural networks for neural decoding.
    Wu X; Lin DT; Chen R; Bhattacharyya SS
    J Neural Eng; 2023 Jul; 20(4):. PubMed ID: 37429288
    [No Abstract]   [Full Text] [Related]  

  • 14. Stable tensor neural networks for efficient deep learning.
    Newman E; Horesh L; Avron H; Kilmer ME
    Front Big Data; 2024; 7():1363978. PubMed ID: 38873283
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An Optimal Transport Analysis on Generalization in Deep Learning.
    Zhang J; Liu T; Tao D
    IEEE Trans Neural Netw Learn Syst; 2023 Jun; 34(6):2842-2853. PubMed ID: 34554918
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A feasibility study of deep learning for predicting hemodynamics of human thoracic aorta.
    Liang L; Mao W; Sun W
    J Biomech; 2020 Jan; 99():109544. PubMed ID: 31806261
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deformation trajectory prediction using a neural network trained on finite element data-application to library of CTVs creation for cervical cancer.
    Beekman C; Schaake E; Sonke JJ; Remeijer P
    Phys Med Biol; 2021 Oct; 66(21):. PubMed ID: 34607325
    [No Abstract]   [Full Text] [Related]  

  • 18. Simulation of the 3D Hyperelastic Behavior of Ventricular Myocardium using a Finite-Element Based Neural-Network Approach.
    Zhang W; Li DS; Bui-Thanh T; Sacks MS
    Comput Methods Appl Mech Eng; 2022 May; 394():. PubMed ID: 35422534
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identifiability of soft tissue constitutive parameters from in-vivo macro-indentation.
    Oddes Z; Solav D
    J Mech Behav Biomed Mater; 2023 Apr; 140():105708. PubMed ID: 36801779
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simulation of hyperelastic materials in real-time using deep learning.
    Mendizabal A; Márquez-Neila P; Cotin S
    Med Image Anal; 2020 Jan; 59():101569. PubMed ID: 31704451
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.